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Abstract

In this paper we propose a quadratic cost function for allocating sample size in multivariate stratified random
sampling in the presence of the non-response. We use the separate linear regression estimator. In this multi-
objective non-linear integer programming problem, we use extended lexicographic goal programming for
solution purpose. To illustrate the application, we apply this formulation on a real data set.
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1- Introduction

A good sampling plan plays a significant role to make the results useful, obtained from statistical studies and
provides close approximation to the population estimates. A suitably selected sampling plan and samples,
representing population, produce more reliable estimates.

The important consideration in stratified random sampling is the sample size allocation in each stratum with the
criteria either to minimize variance of stratified sample mean for a fixed cost or to minimize cost for the specified
variance.

Stratified random sampling is used to increase precision following some cost mechanism. Allocation of sample
size nyto individual stratum becomes more complicated in a study or survey in practical utilization of stratified
random sampling scheme. The researcher meets problem to select a sample that maximizes precision of finite
population mean under cost constraint.

Sampling efficiency depends largely on how the sample size is allocated. In univariate stratified sampling,
individual optimum allocation can be used when the characteristics are correlated but in case when the
characteristics are uncorrelated a suitable criterion is needed for allocation of sample size which is optimum for
all the characteristics. Cochran [24] discussed that is difficult to work out an allocation which is optimum for all
characteristics unless the characteristics are highly correlated and the variation between stratum variance in very
small. Compromise allocation is based on such criteria. Holmberg [25] addressed the problem of compromise
allocation in multivariate stratified sampling by taking into consideration the minimization of sum of variances or
coefficients of variation of population parameters and minimization of sum of efficiency loss which may results
due to increase in variance because of using the compromise allocation.

The solution of a problem needs some compromise allocation criteria which make the allocation optimum for all
characteristics. For example an allocation which minimizes the trace of variance-covariance matrix of the
estimator of population mean or that minimizes the weighted average of variances or that maximizes the total
relative efficiency of the estimators as compared to corresponding individual optimum allocation Varshney et al.
[21]. Many authors Haseen et al. [26], Khan et el. [18], Kokan [27], Folks and Antle [9], Dalenius [8], Ghosh
[10], Ali [23], Khan et al. [20], Ansari el al. [1], Guddat et al. [11], Haimes et al. [12], Hiller and Lieberman [13],
Khan et el. [17], Charnes et al. [6], Charnes et al. [4], Khan et al. [19], Bethel [2], Chromy [7] and Khowaja [28]
used different compromise criterions to solve allocation problem in stratified sampling.
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This paper is organized as follows: Section 2 explains the model for the cost function. In Section 3, we formulate
the problem. Section 4 explains lexicographic programming. The results and discussions are given in Section 5.

2- Quadratic Cost Functions

The cost of survey is a major factor of sample allocation to various strata. Tschuprow [30] and Neyman [29]
proposed an allocation procedure that minimize variance of sample mean under a linear cost function of sample
size n = Xy "nyin stratified random sampling. Neyman [29] used Lagrange multiplier optimization technique to
get optimum sample size for single variable under study. The linear cost function used in stratified random
sampling in case of the non-response is given as;

Ch = Chonp + Chanpg + Croup2z (9

WhereC denotes total budget available for survey and Cy be the per unit cost of selecting nh units. Cy,; be the per
unit enumerating cost of np; units. Cp,be the per unit enumerating cost of uh2 units from the non-respondents. The
expected values of np; = Whinp and upz = Whanp/ K,

selected from the h'" stratum.

Considering a quadratic cost function, including measurement unit cost and traveling cost within strata as Beard
wood et al. [3] proposed the shortest route among k randomly allocated sampling units in the region is
asymptotically proportional to pSqrt(k) for a large k. Varshney et al. [21] used a quadratic cost function for large
sample size given in (2).

L L
C=c¢o +Zch + Zth\/nh(z)
=1 h=1

wheretyis travel cost for a unit within the h™ stratum.
Equation (2) can further be extended to case of presence of the non-response given in (3).

L L
Z(tho + th1Whe) /0y + Z th/un < Co (3)
h=1 h=1

Wherety, is travel cost for the respondents unit within the h'" stratum and ty,, is travel cost for the non-respondents
unit within the h™ stratum. And upisthe sub sample from non-respondents units.

3- Optimum Allocation Techniques

The different techniques to solve the multi objective programming problem of multivariate stratified sampling in
case of non-response are explained below.

3.1- Individual Optimum Technique
It is an allocation technique that optimize coefficient of variation of one characteristic of population among Y;(j =

Let Vj*be the optimum value of objective function V; obtained by solving the following integer nonlinear
mathematical programming problem (INMPP).

Minimize V;
Subject to
L L
Z(COh + Chy Wh)ny, + Z Chz Up < ¢ (4)
h=1 h=1
2<n, <N

2<up < ng,
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3.2 The Goal Programming Technique
Charnes et al. [4], Charnes et al. [6], Charnes and Cooper [5] and Ijiri [14] used the goal programming technique
for multi-objective optimization problems.

We can use the goal programming technique when all information about the characteristics are given and the
importance of each characteristics is known. Formulation under goal programming technique can be written as:

Minimize (V1, Vo, ....,Vp)
Subject to

Z(COh + Cp1 Whe)ny, + Z Chzup < ¢ (5)

2£ n, < Ny

2<up < Ny,

nnand uy, are integers, for all hand j.

3.3- Extended Lexicographic Goal Programming Technique

Romero [31] starts reviewing the satisfying philosophy of Goal Programming(GP) and interpreting their solutions
from the point of view of the utility theory. This interpretation leads to a very general optimization structure
called Extended Lexicographic Goal Programming (ELGP). It is then demonstrated that there are a significant
number of Multiple Criteria Decision Making (MCDM) approaches that, from a logical point of view, can be
reduced to the ELGP structure.

MinimizeV; = f(ny, u;;)
Sub jectto

Z(COh + Ch1 Whe)ny, + Z Chz Up < ¢ (6)

2< ny < N,
2<up < ﬁhZ
njpanduyj,areintegersandn;, € J;h=1,2,... L

Note that in this generic form no assumptions have yet been made about the nature of thedecision variables of
goals. The decision maker(s) sets a real target level for each goal whichis denoted by Vj(generally an individual
optimal of the j"™objective). This then leads to the basic formulation of the j"goal:

Vi+d —d" =V
Where d;” and, d;" are —ve and +ve deviational variables.
The utility formulation of the Archimedean and MINMAX (Chebyshev) GP models undertaken in the preceding
section suggests the foIIowing generalization:

Minimize(1 — p)D+pZ W1,d W21d+)]
j=1

Subjectto
| (W wydf )| <D (7)
Z +d; —df (S or2)Z;
i, €F

nihanduihareintegersandnil1 eF;h=12 .. L
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Where parameter Wjiand W, are the weights reflecting preferential and normalizing purposes attached to the
negative and positive deviation variables of j™goal, respectively. Parameter weights the importance attached to
the minimization of the weighted sum of unwanted deviation variables and 0 < 6 <1. Hare fj(j = 1,2,..., q) are
goals and F is the feasible space.

Integer nonlinear programming problems have a small feasible solution grid and we are already compromising on
allocating sample size. This will help us to find feasible and optimal solution considering larger grid using this
relaxation.

4- Application

In stratified random sampling every stratum is divided into two mutually exclusive groups of respondents and
non-respondents, with Np; size of respondents and Np2(Nn2 = N - Nyy) size of non-respondents in the h™" stratum.
We select a sample of size n from the given population n, of the respondents units and u, from the non-
respondents units are selected from Ny units in the h'" stratum such that X-;"np= n. let p >2 the characteristics are
defined one of the population unit and the estimation of the p unknown population mean Y;,j = 1,2,..., p is of
interest.

Necessary formula:

L Nh nh L Nh Nh
_ 1 1 _ 1 _ 1
Y, = NE Yini Xjn hzxjm’ Xj = Nz Xjni Yin = N Z}’]m
h=1i=1 i=1 h=1i=1 i=1
nh nh
, 1 L 1 _
$xjn == —Z(xjhi = Xjn) $%yjn == —Z(J’jm’ = ¥jn)
np — 1 = np, — 1 =
1= 1=

nh
1 _ _
Sxyjn == mZ(xjm’ — Xin) (Vjni = Yjn)
i=

Using Hansen [22] rule, as the non-response is in study variable Y.
Lety *jp= (Mp1Yjn1 + Na2Yjn2)/mpbe an unbiased estimator of the population mean\_(]-,l where y,,the mean of
respondents sampling units np; andy;jp2is the meanof non-respondents sample units u..
The traditional regression estimator is yj ;s = ZlL,:1Wh}_’1r,;hWhere
Yiirs = Yjn + b]-h()_(hih + y,-,,) and are bj, is sample regression coefficient.
The MSE of yj is:
L L
MSEGipe) = S W2y (= 2) (Syn2 = 28 2B8n2S% )+ » W2 WSy in®
Fjurs) = TN ( yin~ = 2BjnSxyjn  — 2Bjn xj) n\ 7, nn) Wn2Svin
h=1 h h=1 h
Where
¥in= Sample Mean of j" study characteristic in h"stratum.
Xjn= Sample Mean of j"" auxiliary characteristic in h" stratum.
)_(ih: population Mean of j™ auxiliary characteristic in h™ stratum.
Sf,]-h: population Variance of j" study characteristic in h™stratum.
S,Zq-h: population Variance of j™ auxiliary characteristic in h™ stratum.
Sf,x]-h: population Covariance between the j™ study and the j™ auxiliary characteristic in h™ stratum, andBjn, =
S5 jn/ S3jnis population regression coefficient.
Now let
2 2¢2 ) =
(Syjh — 2BjnSxyjn  —2Bjn"S x]-) = Pjn

165



International Journal of Business and Social Science Vol. 5, No. 13; December 2014

Then the above equation can be written as:
L
_ Wip h Wh Djn Wha 1
MSEFyrs) = ) —0 ’ 2 R e [
h=1 M h=1 n

As the units of all characteristics measured are not same, therefore it needs to use an estimate which is free from
unit measurement. So coefficient of variation is used instead of MSE.

/ MSE(¥j.rs)

CV(T/ j.lrs) = Y

W2p; 5 W 1
hPjn hp]h 2 w2, (ﬂ__) Wiy
Ny e~ nh

L
Wep; Wip w, 1
2 _ h Vjh h ]h 2 h2 2
W= 2 2 ZW (o =7) WhaSom
h=

A sample size n=Xn-,"npfor (h = 1, 2,..., L) is determined using proposed Quadratic cost function in Eq.3 that
minimizes coefficients of variation of the estimator of population mean for each characteristics Yj(j =1, 2, ..., Q).
This problem is formulated in multi-objective integer nonlinear programming as:

Minimize (V1, Vo, ....,Vp)
Subject to

Z(COh + Chy Wh)ny, + Z Chzup < ¢

|
™

-
1

CV(T/ jirs)

2<n, < N
2<up < nm. )
nnand uy, are integers, for all hand j.

Allocation through Individual optimum technique

MinimizeV; Subjectto

Z(COh + Chy Wh)ny, + Z Chz Uy < ¢
h=1 h=1

2<n, < N
2<up < ﬁhZ
nihanduihareintegersandnih; h=1,2..,L

Allocation through Extended lexicographic goal programming
P

Minimize(1 — p)D + 02 [(d_i_ 4 )]
Subject]t:o1

[(ar.a1)] =D

—~ _ + *
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L L
Z(COh + ChyWh)ny, + Z Chz Uy < ¢
h=1 h=1

2<n, < N
2<up < Ny,
nihanduihareintegersandnih; h=12, .. L

Where dj(j=1, 2, ....,, p) are the deviation variables.
Here Vjare the optimum values obtained from extended goal programming.

5- Numerical Hlustration

The data are taken from the agricultural census 2007 conducted by National Agricultural Statistics Service,
USDA, and Washington D.C. (Source: www.agcensus.usda.gov).

Y, = Corn harvested in 2007.
Y, = Soybean harvested in 2007.
X;,= Corn harvested in 2002.
X,= Soybean harvested in 2002.

Where Y, , Y, are study variables and X, , X, are auxiliary information.

Here Y; = 22698622:75 and Y, = 4306561:045. It is assume that the total cost of the survey is 331 units.The last
27, 30, 27 and 20 percent values consider as non-response in each stratum respectively.

There are four strata in the population.The complete data are shown in APPENDIX.
5.1 Results and Discussion

In the three allocation techniques, extended lexicographic goal programming (ELGP) gives minimum values of
CV than the other two techniques. Extended lexicographic goal programming set two additional constraints to
bound Coefficients of variation maximum to their individual optimum values. Using an arbitrary weight 6= 0:4
for unwanted sum of deviations from individual optimum values and (1 - 6) = 0:6 for maximum deviation from
utility, we minimize the goal objectives or achievements function under originally defined cost and decision
variables constraints. By changing arbitrary weight 6, different results are expected (see Table 1)

Table 1: Compromise Allocations and Corresponding Values of the Objective Functions Obtained by
Different Techniques

Allocation | Indiviual opt. technique | Goal prog. | Extended lexico.
(m1, 1) (14,3) (17, 4) (17,4)
(12, tz) (35.10) (34, 10) (36, 10)
(M3, ua) (17,4) {13, 3) (14.3)
(104, uy) (8,2) {10, 2) (10,2)
' 03100 0.03040 0.3020
Ve 03010 0.02910 0.2900
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Appendix
Table 2: Summary Statistics of Data
1 22 0222 073 027 083371037 217505054 5.76 % 1013 167 x 101%  7.80 x 10%
2 40 0404 070 030 1731822795 2308431.77 1.21 x 10" 250 x 10 122 x 10™
3 24 0242 073 027 11778330.02 287600292 557 x 1013 358 x 1012 2,67 x 108
4 13 0131 080 020 1154644292 2080656.00 7.08 % 1013 444 % 1017 401 x 1088
5'32 h9 Tk Trap Sﬁ 1h .5'52 % .Srym 1A Ey 29k

1.48 x 10  0.591 0.591 0.253 0.267 2622322.77 550824.49
2.807 x 1012 0.575 0.475 0.255 0.242 4340658.42 590425.82
3.02 x 1022 050 0.542 0.259 0.167 3072607.89 745074.54
6.28 x 101 0.308 0.461 0.269 0.333 2664563.75 3489303.00
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