
International Journal of Business and Social Science Vol. 4 No. 11; September 2013

36

Efficient Customization of Software Applications of an Organization

Rajeev Kumar

Assistant Professor

Department of Business Administration

College of Business

Kutztown University, Kutztown, Pennsylvania 19530

USA

Abstract

Nowadays organizations perform a great deal of their work online that requires Information Systems. Although

the availability of ready-to-use software applications has greatly reduced the acquisition timesof these systems,

organizations still have to spend significant time and resources in their implementation and management. These

applications are only offered as a part of generic software packages and organizations have to customize them
according to their unique requirements. This requires gathering the requirements of the organization and then

customizing the applications accordingly. The customization phase of software implementation can be

challenging because the organization has to typically rely on a small team of programmer of its IT department
and the process involves a great deal of learning. This paper shows that theexisting approaches of software

development and project management are insufficient for the distinct challenges of this setting. The

analyticalmodels of the paper provide insights into these challenges and show how this process can be
streamlined. The paper also provides the complexity class of theproblems that corresponds to these challenges. A

numerical analysis is conducted to demonstrate the effectiveness of the proposed approaches.

Keywords: Software customization, optimum assignment, computational complexity

1. Introduction

Nowadays organizations perform a great deal of their work online that requires Information Systems. For

instance, academic institutions typically rely on Information Systems for the delivery of their course work and for
maintenance of information about their student finances, human resources, student administration, etc.

Desire2Learn (D2L 2013) is one of the software applications that is being utilized for the course delivery and

PeopleSoft Campus Solutions suite (Oracle 2013) is one of the leading products for the maintenance of

administrative information.

Although the availability of these ready-to-use software applications have greatly reduced the acquisition timesof

these systems, organizations have to still spend a great amount of time and resources in their implementation and

management. These applications are only offered as a part of generic software packages, and after their purchase,
organizations still have to customize them according to their unique requirements (Pollock and Cornford 2004). In

order to satisfythe distinct customization requirements of organizations, applications such as PeopleSoft are

designed to allow the organization to configure its software with hundreds of options (components). This also
allows the product to be mass marketed as essentially a generic product with sufficient customization potential to

meet an endless variety of local needs of the organization.

In the customization phase, the organization typically relies on a small team of programmers of its IT department.
Thisphase also requires a great deal of learning, as the local IT team has to depend on the external consultants and

that requires consulting fees.Itmay take years for the customization phase to complete and the total costs can add

up to millions of dollars (The Observatory 2003). The pricing of these applications (licensing fee)is very complex
as it depends on numerous factors such as the componentspurchased, consulting fees, the size of the organization,

the revenue earned by the organization, etc.For instance the license fee of the Reporting Tools module of

PeopleSoft Campus Solutions could be $17500 or $35000 depending on the revenue of the organization and/or

the number of its employees (Oracle 2013).

© Center for Promoting Ideas, USA www.ijbssnet.com

37

Two major issues were identified after observing the implementation of PeopleSoft at a local four year

college.First, most of the activities related to the customization of the application only occurredafter a version of

the generic product waspurchased by the management of the organization. That is, after the management acquired

a generic product, only then the organization solicited the feedback of its users, such as faculty and students,
about itscustomization. This was done through a central committee of the faculty members and the management.

Second, there was no objective strategy for assigning the team members (programmers) to the customization

tasks. This was done on anadhoc basis only after the tasks related to customization were known.Specifically, the
existing approach does not consider the competencies of the programmers. This is important as some

programmers may be more suitable and/or interestedincustomizingcertain components than the other.

The central aim of this research is to suggestmethods for the optimum execution of the customization phase of

software implementation of an organization.In this context, given the requirements of the users and the

programmers, the paper aims answers the following two specific questions:

1) Howcan the IT team prioritize its customization/developmentactivities?

2) How can the project manager optimally assign the team members to the differenttasks of customization?

This paper presents an approach in the Section 3 that answers these two questions.In order to mitigate the

inefficiencies of the existing method, the proposed approach solicits the feedback about the usability of different
components before the decision to purchase the application is finalized. This leads toa more efficient scheduling

of the tasks of customization,as the IT team,ahead of time, hasthe information about the components that are to be

customized. The approach also solicits and then utilizes the feedback of the programmers about their
competencies. This allowsan appropriate assignment of the programmers to the tasks. An additional benefit of the

approach is that it can also be utilized to form teams (programmers working on the same task), which are based on

the self-reposted (objective) data of the programmers about their competencies.Note that there may be different

demands for different components in the organization. Some components may be demanded by a greater number
of faculty members than the others. It is also possible that the requirements of some of the faculty members may

not be satisfied within the time horizon of the problem. This may happen because they may demandcomponents

that are not of interest to manyusers. Therefore, in the approach of this paper, those components are given
priorities that arethe most sought-after in the organization.

The rest of the paper is organized as follows. The next section provides the literature that relates to this problem.
Section 3 provides the analytical models which can be utilized by the IT team to manage the customization

process, based on the requirements of its users and the programmers. Section 4 provides a numerical analysis that

shows the working of the approach. Section 5 provides the conclusion of this paper and suggests ideas for the
future research.

2. The Review of the Relevant Literature

The area of software development broadly relates to this research. The term software development refersto the

process of writing and maintaining the source code (computer program)from the conception of the desired

software through to the final manifestation of the software (McCarthy 1995). The customization issues discussed

in the last section relates to this area as the broader issue there is of the developmentof a new software application.
In the present setting,however, the software application does not require development from the foundation. A

generic product already exists, which only needs to be customized. The research question of this paper is a special

case of the broader setting of software development. Therefore, the concepts and methodologies of software
development such as software development lifecycle and waterfall model (Royce, Winston 1970)are not specific

enough for the current setting.

The problems discussed in the last section also relate to the project management area of Operations Management
as the broader problem here is of the creation of an optimum schedulefor thecustomization process. The

approaches of project management such as Critical Path Method (CPM) (Kelley 1961), however, are not directly

applicable in this setting as they are relevant only for scheduling the tasks along the time horizon and are not
applicable for finding a proper assignment of the tasks to the entities performing the tasks. In the current setting,

the time requirement of a task is also not fixed and it depends on the programmer performing the task.

http://en.wikipedia.org/wiki/Source_code

International Journal of Business and Social Science Vol. 4 No. 11; September 2013

38

Note that in the current setting, different programmers can have different level of competencies

(productivities)and interests for different tasks. But once the team members are assigned to the appropriate tasks,

the approaches of project management can also be utilized forcreation of efficient schedules forthe customization

process. Therefore, the project management approaches can complement the approach of this paper.The next
section provides the formulations of the problems thatwere discussed in the last section.

3. Problem Definition and the Formulations

Soliciting the feedback from the users (accomplished by a centralized body)

Let, the available components (tasks) are indexed by j. The set T contains the indexes of the tasks: T=
{1,…,m}.The committee (a centralized body) provides this information along with the description of the

components to the faculty members (users).In the first phase, thecommitteesolicits the feedback from the users on

their preferences for the available components. To ensure that each user has equal influence on the customization
process, the users are given equal voting right. That is, the sum of the weights (votes), for a user, across all the

tasks must add up a constant number, which is the same for each faculty member. This constant could be 1, for

instance. The faculty members can declare their preference for the components by breaking their vote across
different components.Once the preferences of the users are obtained, the committee adds all the votes for each

task. The committee willnow have the following information:

𝑣j:The numeric value corresponding to the importance of the task j according to the users’ preferences ∀𝑗 ∈ 𝐓.

Soliciting the data about the competencies of the programmersin the tasks (accomplished by the program

manager or the team head)

The programmers are indexed by i. The set P contains the indexes of the programmersP= {1,…,n}.

c𝑖 : The total time available to programmer iin the customization phase∀𝑖 ∈ 𝐏.

Each programmer provides the estimates of the times she requiresto finisheach of the tasks.

𝑡𝑖𝑗 : The estimated time that programmer irequires to complete task j∀𝑖 ∈ 𝐏, 𝑗 ∈ 𝐓

The issue of incentive compatibility

A relevant issue in this context is of incentive compatibility. That is, what is the incentive for the programmers to

tell the truth about their competencies?An intuition for the truth telling property in the present setting is that if a

programmer overestimates the time requirement for a task then she is under the risk of performing a task that she
does not desire. Note that in the next phase the programmers will be assigned to the tasks based on their

competencies. The programmers can be incentivized not to underestimate their time requirements by simply

imposing a monetary penalty for the overtime. The theoretical issues related to incentive compatibility in this

setting, although important, are outside the scope of the current research and are left for the future research.

To assign the programmers to the tasks, the program manager can utilize the Mixed Integer Program (MIP)
model, Q, given below. Thismodel also provides a method for the team formation (programmers working on the

same task) based on the self-reported competency dataof the programmers, rather than an ad hoc approach tothe

team formation.

Decision Variables

𝑥𝑖𝑗 :The fraction of taskjto be completed by programmer

𝑦𝑗 =1, If task jisto be completed

 0 otherwise

𝐐: max 𝑣𝑗𝑦𝑗

j∈𝐓

© Center for Promoting Ideas, USA www.ijbssnet.com

39

Constraints

 𝑡𝑖𝑗
𝑗∈𝐓

𝑥𝑖𝑗 ≤ c𝑖∀𝑖 ∈ 𝐏

 x𝑖𝑗

𝑖∈𝐏

≥ 𝑦𝑗∀𝑗 ∈ 𝐓

 x𝑖𝑗

𝑖∈𝐏

≤ 1 ∀𝑗 ∈ 𝐓

0 ≤ 𝑥𝑖𝑗 ≤ 1, 𝑦𝑗 ∈ {0,1} ∀𝑖 ∈ 𝐏, 𝑗 ∈ 𝐓

The above program assigns the programmers to the tasks such that the total value of the tasks performed is

maximized. That is, the most important components for the organization are customized within the problem
horizon. Note that some “unpopular” tasks may not be selected/completed by the programmers. The first set of

constraints ensures that, only the tasks that can be performed by a programmer within the time available to her,

must assigned to her. The second and the third set of constraints together ensure that if a task if selected then it

must be completed by some of the programmers. Note that if𝑦𝑗 = 1, then x𝑖𝑗𝑖∈𝐏 = 1.

Observation 1: In the MIP, Q, the number of integer decision variables and integer constraints are of the order of
|T|.

Below is the formulation of a version of the problem where one task can only be assigned to one programmer:

Decision Variablesof the Integer Program version of the problem

𝑥𝑖𝑗 = 1, if programmeri is assigned to taskj

 0, otherwise.

Objective Function

𝐂: max 𝑣𝑗𝑥𝑖𝑗

j∈𝐓i∈𝐏

Constraints

 𝑡𝑖𝑗
𝑗∈𝐓

𝑥𝑖𝑗 ≤ c𝑖∀𝑖 ∈ 𝐏

 x𝑖𝑗

𝑖∈𝐏

≤ 1 ∀𝑗 ∈ 𝐓

𝑥𝑖𝑗 ∈ 0,1 ∀𝑖 ∈ 𝐏, 𝑗 ∈ 𝐓

Note that the second set of constraints in the above formulation ensures that each task can only be assigned up to
one programmer. On the other hand, a programmer can perform several tasks.

Theorem 1:The abovementioned problem (C)is an NP hard problem.

Proof: Knapsack problem (keller et. al. 2004) reduces to the above problem. To see that, consider the case with
only one programmer. That eliminates the bottom set of constraints and the problem becomes a knapsack

problem.

Theorem 2: The above problem, in fact, is a special case of generalized assignment problem.

Proof: Observe that this is the case where the value of completing the task is independent of who completes the
task.

Observation 2: A polynomial time (α+1) approximation scheme for generalized assignment problem (Cohen et. al.

2006) can also be utilized to solve the above problem.

International Journal of Business and Social Science Vol. 4 No. 11; September 2013

40

4. Computational Results

The previous section presented the formulations of the problems that can handle all the requirements of the
programmers and the users. One of the formulations was a mixed integer program (MIP) and the other was an

integer program (IP), which wasalso NP hard. This section presents computational experiments to test the time

required to solve different sizes of the problems (Q) and (C). Table 1and 2belowshow the times required to solve
different instances of the problems on Solver software (Solver 2013).The software was installedon a computer

with the following specifications: Intel (R) Core ™ i3 CPU M 330 @2.13GHz, Installed Memory (RAM):

4.00GB.

Table 1 below summarizes the times taken to solve different instances of problem Q. These instances had up to 30

components (tasks) and 6 programmers. All these instances took less than 2 seconds to solve.

Table 1: Time taken to solve different sizes of problem Q

|T|

↓

/|P|

→

3 6

10 < 1 second < 1 second

15 < 1 second <1 second

20 < 1 seconds <1.5 second
25 <2 second <2 second

30 <2 second <2 second

Table 2 below provides the computation results for different instances of problem C. For comparison purposes,

the instances had the same sizes as Q. As we would expect, the C versions of the problem required
significantlygreater times to solve than Q versions, as they hadgreater number of integer variables and constraints.

Moreover, the problem C is also in the NP hard class.

Table 2: The time taken to solve different sizes of problem C

|T|

↓

/|P|

→

3 6

10 < 1 seconds < 1 second

15 < 6 seconds 16 seconds
20 < 18 seconds 30 seconds

25 28 seconds 50 seconds

30 40 seconds 1.5 minutes

As discussed in the previous section, a polynomial time algorithm is availablefor the problem C. The team

manager can also utilize that to efficiently solve larger sizes of this problem. Another approach to solve larger

sizes of the problem is to break the problem into smaller sub problems. The team manager can first select a subset

of tasks that are to be completed first and the programmers canprovide their competencies for only thosetasks.
The optimization problem can then be solvedby onlyconsidering those tasks. This approach can be repeated till no

further task is left.

5. Conclusions and the Future Research

Ready-to-use software applications are only offered as a part of generic software packages and organizations have

to still customize them according their ownunique requirements. Customization of these applications can be a

time consuming task as the organization typically have to rely on a small team of its local programmers to
accomplish the task. This paper provided an approach that helps the organization to efficiently customize these

applications. The limitations of the existing approaches of software development and project managementin these

contexts are presented.

© Center for Promoting Ideas, USA www.ijbssnet.com

41

The analytical models of this paper also provide a wayof effective team formation. The complexity class

associated with the IP version of the problem is presented. Thenumerical study of the paper demonstrated the

effectiveness of the proposed approach.This paper identifies two specific areas where this research can be further
developed. First, even after assigning the programmers to the customization task, the project manager can use an

approach from project management to find an efficient schedule for the tasks ofcustomization. Here, issues such

as: which tasks can be simultaneously accomplished, the required sequencing of the tasks, etc., will also needs to
be considered. Second, the issue of how to design proper incentives and penalties for the programmers so that

they report their true competencies is of importance in the setting of this paper. These issueswill be further

considered in detail in the future work.

References

D2L 2013: www.desire2learn.com/

Jim McCarthy (1995): Dynamics of Software Development.

Keller H., Pferschy, and D. Pisinger.(2004). Knapsack Problems. Springer
Kelley, James. (1961). Critical Path Planning and Scheduling: Mathematical Basis. Operations Research, Vol. 9,

No. 3, May–June

Oracle 2013: http://www.oracle.com/us/corporate/pricing/peoplesoft-price-list-070612.pdf
Pollock, N and Cornford, J. (2004).Customising Industry Standard Computer Systems for Universities: ERP

systems and the University as a "Unique" organisation' Information Technology and People, 17(1): 31-52.

Reuven Cohen, LiranKatzir, and Danny Raz. (2006). An Efficient Approximation for the Generalized Assignment

Problem, Information Processing Letters, Vol. 100, Issue 4, pp. 162–166, November
Royce, Winston. (1970). Managing the Development of Large Software Systems, Proceedings of IEEE WESCON

26 (August): 1–9

Solver 2013: www.solver.com
The Observatory 2003: www.obhe.ac.uk/documents /download?id=594

