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ABSTRACT 
 

Investment theory has as a major tenet the concept of efficient markets.  In an efficient market all information 

is fully reflected in the price of a stock.  As such, there is no trading strategy based on known data that can 

earn an abnormal profit. Using price and volume data, this design and subsequent model produces a weak 

form test of the efficient markets hypothesis.  First, an Object-Oriented design is presented as a framework for 

utilizing a probabilistic neural network (PNN) for the purpose of earning abnormal profits.  Next, this design 

is implemented and subsequently used to simulate the process of buying and selling stocks.  Insight is 

provided for the PNN parameters while giving values that produce the best empirical results.  As detailed in 

this study, the PNN shows promise as the basis for developing trading strategies that may earn abnormal 

profits. 
 

INTRODUCTION 
 

It has been shown with many studies that stock market returns are predictable using linear models on publicly 

available data (Schwert, 1990) and (Balvers, Cosimano, and McDonald, 1990).  However, it is widely known 

that stock markets often display non-linear behavior.  Therefore, it is necessary to find methods that can 

overcome the limitations of linear models with respect to financial markets. One choice for overcoming linear 

model limitations is the neural network.  Vellido, Lisboa, and Vaughan (1999) state that financial forecasting 

has been done extensively using multi-layer feed-forward neural networks because of their inherent ability to 

classify and predict a given dependent variable.  Hill, O’Conner, and Remus (1996) find that neural networks 

have the ability to overcome problems associated with linear based methods for financial market predictions.   
 

There are several types of neural networks that show promise in explaining the relationships within a stock 

market.  These include Kohonen self-organizing maps used for classification (grouping of stocks) purposes, 

multi-layer feed-forward neural networks for estimating various parameters in a market, and probabilistic 

neural networks for classification (up/down signals for prices).  PNNs are simply a variation of a feed-forward 

neural network and provide an output in the range of 0-1. The contribution of this paper is to provide an 

Object-Oriented design for creating future implementations, extend the notion of using a PNN for predicting 

stock market winners and to provide valuable insight into the PNN parameters for future research.  We present 

a design and implemented PNN that can be used to test a wide variety of stock market trading strategies.   
 

FINANCIAL MARKETS REVIEW 
 

The efficient market hypothesis claims that prices fully reflect all information.  This theory of investment 

informational efficiency dates back to the dissertation of Louis Bachelier (1900). The early works of Fama 

(1965) and Samuelson (1965) provided support for the random walk hypothesis and the efficient market 

hypothesis.  See Dimson and Mussavian (1998) for an excellent history on the development of the efficient 

market hypothesis. The efficient market hypothesis is examined via various tests of market behavior and 

efficiency.  The weak form test of the efficient market hypothesis posits that prices fully reflect all 

information implicit in historical price and volume information.  The semi-strong form test of the hypothesis 

asserts that all publicly available information is reflected in market prices.  The strong form test of the 

hypothesis asserts that information known to any market participant is fully reflected in market prices. As 

computer technology caught up with investment theory, tests of market efficiency began to concentrate on the 

reflective efficiency of the market.   
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That is, how quickly (efficiently) do market participants reflect new information into the price of a security? 

Technical analysts search for shifts in price and volume that can lead to trading rules that will signal buys and 

sells before all profit is lost.  These technical trading rules are viewed to be most impacted by studies that 

continue to show support for the random walk hypothesis and the weak form test of the efficient market 

hypothesis.  Fundamental analysts believe that searching out information about a company and applying 

rigorous analysis can lead one to superior returns.  This type analysis does not hold up well given the results 

of the semi-strong form tests of the efficient market hypothesis.  Most semi-strong form tests show that acting 

on publicly traded information does not lead to superior risk adjusted returns.  The strong form tests of the 

efficient market hypothesis shows that some market participants do have information that may be useful.  

Corporate insiders may have information that allows them to legally trade the stock of their company and earn 

superior risk adjusted returns.  Some corporate insiders’ trade on information that earns superior returns, but 

the information is considered illegal insider information and the profits are illegal.  Does the profit have to be 

legal to disprove the hypothesis? 
 

Much of the criticism directed toward the supporters of the Efficient Market Hypothesis comes from the 

professional investment community.  Accurately noting that many academic studies are based on statistical 

tests that are linear, the argument has been that the factors driving risk, return, and ultimately pricing of 

securities is much more complex.  Lendassse et. al. (2000) provide linear and non-linear models to show the 

ability of a neural network to provide results which “...seem sufficiently strong to question the random walk 

hypothesis.”  There have been many attempts at quantifying neural network approaches for investments with 

traditional investment methods.  Gençay (1998) presents a nonparametric model to maximize profits from an 

investment strategy.   It is shown that when compared with a simple buy-and-hold strategy the technical 

strategies provide significant profits.  Also, it is reported that the sign predictions of the nonparametric models 

are statistically significant.  Enke et. al. (2005) present an information gain technique to evaluate the 

predictive relationships of some financial and economic variables.  They also examine the differences between 

level-estimation neural networks and probabilistic neural networks and conclude that models, such as a 

probabilistic neural network, provide higher risk-adjusted profits than a simple buy-and-hold strategy in a 

financial market.   
 

Thawornwong et. al. (2003) investigate using technical indicators as input to a neural network.  Their results 

indicate that the proportion of correct predictions and the profitability of stock trading are higher than 

traditional benchmarks. Similarly, there have been attempts to compare neural network methods with other 

types of quantitative methods.  Jasic and Wood (2004) report that neural networks provide significant 

information gain over a benchmark linear autoregressive model.  Also, they show that buy and sell signals 

provided by neural networks are significantly different from unconditional one-day mean returns.  Olson and 

Mossman (2003) compare neural network forecasts against the forecasts of ordinary least squares and logistic 

regression.  They report that neural networks have superior performance over the other two methods.  Also, 

they report that classification models perform better than point estimation models.   Leung et. al. (2000) 

evaluate the efficacy of several classification techniques in financial markets which include probabilistic 

neural networks, adaptive exponential smoothing, logit and discriminant analysis.  Their results indicate that 

probabilistic neural networks perform better, almost exclusively, over the other methods tested.  In addition, 

they note that using two thresholds for a trading strategy works better than a single threshold.  For instance, 

when using a probabilistic neural network, a single threshold purchase strategy could be used when the 

network outputs a value 0.5 or higher.  However, a multiple threshold strategy allows for purchasing 

securities, shorting the market, or even doing nothing.   
 

There are almost an infinite number of input variables for a neural network within the context of a financial 

market application.  Reducing the possibilities for the inputs has been investigated.  Enke et. al. (2005) list 

variables such as interest rates, monetary growth rates, inflation rates and changes in industrial production as 

some of the more statistically important inputs for predicting stock market returns.  Cichocki et. al. (2005) 

present a method called Independent Component Analysis that reduces the number of explanatory variables 

by reducing the set of financial and economic information into a subset of significant components.     It has 

been shown that there is evidence to argue against the efficient market hypothesis.  There is also substantial 

and growing evidence that financial markets display complex behavior that causes linear models to be less 

suitable for market prediction than neural network models.  Neural network models have been shown to 

provide insight into the behavior of markets.  Trading strategies using neural networks show great promise for 

dealing with the non-linear complex behavior of most financial markets. 
 

NEURAL NETWORK MODELS 
 

Neural network models are tools that come from two branches of research.  One is from the statistical  

community and consists of computational statistics and multivariate modeling.   
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The other is from the machine learning community and consists of artificial intelligence and computer science 

techniques that allow for the creation of non-parametric models.  These non-parametric models generalize 

data into models that can be used for classification, pattern recognition, and ultimately prediction.  One of the 

foremost benefits of using non-parametric models is that they can accommodate nonlinear behavior without 

loss of information.   These models work by mimicking the human brain and the interactions of the nervous 

system.  A typical neural network contains an input layer, a hidden layer, and an output layer.  The input layer 

receives the inputs for the model from various sources.  The hidden layer acts as an intermediate step between 

the input and the output layers.  Lastly, the output contains the different outputs of the model.  There can be 

multiple nodes in each of these layers as is illustrated in Figure 1.  The model works using each of the 

connections between the nodes.  The connections have weights typically ranging from 0 to 1. When an input 

is received, a value is propagated through the hidden layer and on to the output layer.  These values are then 

evaluated for the desired accuracy against expected values.  Then, in an iterative fashion, the connections are 

adjusted during the learning process until the network produces the desired accuracy of results.  A historic 

data set is used for both training and testing the efficacy of the neural network.  The data are broken into a 

training set and a testing set.  After running the training data, the network is tested against known data to 

assess the overall performance of the network.   
 

DESIGN OF THE OBJECT-ORIENTED MODEL 
 

The design for the Neural Network based simulation model is shown in Figure 2.  The overall design is 

simplified by leaving out many of the basic get and set functions that accompany all of the classes.  All data 

members are private by design and use public member functions to access the class data.  Also, all classes use 

public constructors and most of the classes use overloaded constructors to accommodate all of the necessary 

instantiations.  Similar to the set/get functions, these are not shown to simplify the illustration of the design.  

The description of the design first details the MainModel and its data members and then goes on to describe 

the simulation portion of the design.   The MainModel class is central to the design.  In fact, the MainModel 

class can be instantiated and run without creating a SimulationModel object.  This allows the design to be 

extensible for future predictions as opposed to just running simulations based on previous data.  The 

MainModel contains a TradingStrategy, a StockCategory, a list of the Stocks and a NeuralNetwork to process 

the data.  It provides an OutputPrediction based on these data members and their respective settings.  The 

OutputPrediction contains information that quantifies the correlation of the predictive value of the 

NeuralNetwork and the actual values of the previous data for the time frame specified in the TradingStrategy.   
 

Each Stock object contains data concerning the stocks of interest included in the StockCategory.  The Stock 

objects contain information about the unique symbol of the stock and the list of data associated with that stock 

symbol.  The data associated with each stock symbol is modeled as a StockInput object.  This data 

(StockInput) includes the date of the data point, the opening price of the security, the high price for the day, 

the low price for the day, the closing price for the day and the volume of the security for that day.  Also, 

output that is associated with each data point is stored in the StockInput object for use in other parts of the 

model.  This simplifies the model and keeps the need for mapping this stored output information to a 

minimum.   The SimulationModel can be instantiated to run simulations using previous data over any time 

period desired.  A SimulationModel contains a list of StockCategories, a list of the TradingStrategies, a list of 

the chosen stock symbols based on the correlated output from the MainModel and a vector (array) of the 

transactions collected during the simulation run.  The SimulationModel is designed to run any number of 

TradingStrategies over any number of StockCategories.   
 

Thus, it is capable of storing any number of Transactions associated with the simulation.  The design contains 

an entry point and for the simulation is assumed to be at the model run time.  The exit point can be based on 

the price of the security either going above the percentChange times the entry price or going below the 

riskMeasure times the entry price.  Since this is implemented within an Object-Orented framework, any 

amount of desired complexity can be added without affecting any other part of the design. A TradingStrategy 

contains basic information that a stock trader would be interested in utilizing but is completely disconnected 

from any category of stock.  A TradingStrategy contains a measure for risk desired by the trader, a look-ahead 

time horizon for prediction purposes, a desired rise (or fall) in the price of the associated securities, the 

amount of previous days of data to use for prediction purposes and the number of Stocks to purchase for 

diversification.  The TradingStrategy is flexible to involve both going short and going long within the 

strategy.   A StockCategory contains information about the stocks of interest.  Examples of StockCategories 

would be “S&P 500” and “FTSE 250”.  Each StockCategory contains a name (such as the previously given 

examples) and a corresponding list of symbols within the category.  Basic operations of a StockCategory 

allow the importing of the data associated with the category into the model as well as basic output. 
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METHODOLOGY 
 

The methodology follows and extends much of the previous literature.  First, a PNN is used based on the 

findings of both Gencay (1998) and Enke et. al. (2005).  Leung et. al. (2000) state that multiple thresholds are 

useful for a PNN.  They suggest this instead of using a basic cutoff point such as 0.5 for predictions.  As such, 

the cutoff point for the PNN is an input variable which allows for testing different values.  The hypothesis for 

this paper is that observed market data (volume, opening price, closing price, high price, low price and index 

level) contain enough pattern information to develop and employ a stock picking strategy that will outperform 

an index type investment.  The hypothesis in this paper closely mirrors the work by Cichocki et. al. (2005) by 

capturing significant information from a reduced set of financial input data.  A PNN is used to extrapolate that 

information for forecasting purposes. The data employed by the model are grouped into three categories, (1) 

trading strategy, (2) stock category, and (3) a listing of the actual stocks.  The model first evaluates each stock 

individually and is then evaluated by the neural network during the training process.  Next, the neural network 

predicts against known values and learns from its mistakes.  The resulting process is a series of iterations 

which evaluates each of the stocks in the S&P 500 for all of the days in the time period.  The time frame 

utilized for this study is March 2003 – August 2006.   
 

The main parameters of the model are the trading strategy and the stock category.  A trading strategy contains 

parameters for the risk tolerance (percent gain or loss allowed), the number of days of data to use for training 

the network, time horizon for the prediction, and the number of stocks to purchase.  Trading strategies 

reflecting differing risk tolerances are easily accomplished.  As such, a trading strategy that is risk averse 

could be developed to reduce the downside risk assumed.  In the model tested for this paper, only the amount 

of positive change is specified.  Another important aspect addressed by the PNN is the time horizon of the 

trading strategy.  The model tested in this paper defines time horizon as the length of time into the future that 

the PNN is attempting to predict.  The stock category defines the list of stocks to be considered by the PNN.  

In this study the S&P 500 is used as stock category.  The symbols of all the companies in the index are used 

by the system to input the historical data for all the stocks.   The model processes the data for each individual 

stock.  The time required to simulate 16 weeks of data is approximately 60 minutes using a 3.0 GHz processor 

with 1 GB of RAM.  During the process of evaluating each stock a correlation score is obtained that measures 

the relationship of the predictability of the PNN for each stock versus the actual results for the most recent 

data available.  In its current state the model uses only positive relationships as information for predicting the 

profitability of stocks.  Another possibility is to convert the model to use negative relationships that would 

indicate a decline in price. 
  

To simplify the model, a constant investment of $1000 USD is used for each stock purchase.  It is assumed 

that this amount will be used to purchase each stock and that the stock can be purchased in partial shares.  

Also, it is assumed that any profit is taken and any loss is returned at the end of each 16 week period.  This 

allows for the constant investment previously mentioned.  The model purchases up to a given number of 

stocks based on the trading strategy.  The stocks are chosen from a list that has the highest correlations 

between the PNN’s predictions and known testing data.  If the list has fewer entries in a given period than the 

desired number of stocks to purchase, the model purchases each of the stocks in the list.  If the list has more 

entries, the model purchases the desired number of stocks based on the largest correlations.  
 

The model’s selling rules are as follows. 1) The stock is sold if it reaches its low price, based on the risk 

tolerance of the trading strategy. 2) The stock is sold if it reaches its desired price at any time, based on the 

amount of change specified in the trading strategy.  3) The stock is sold at the closing price at the end of the 

period if the stock has surpassed neither the specified high nor the specified low prices.  At the end of each 

period, the model steps back to the next period and simulates purchases in that period based on the next PNN 

generated choices.  Taxes and transaction fees are assumed to be insignificant for this study. Stock data is 

downloaded from Yahoo.com and imported into the model.  The model then removes the most recent period’s 

data for simulating the purchase and sale of individual stocks.  The remaining data is used for training and 

testing the neural network.  As is common when developing a neural network 75% of the data is used for 

training and the remaining 25% is used for testing the neural network.  The choice of training and testing data 

results in some stocks being excluded due to lack of available data.     
 

CONCLUSIONS 
 

The contribution of this paper provides an Object-Oriented design for creating future implementations and 

extends the notion of using a PNN for predicting stock market winners.  We presented a design and 

implementation of a PNN that can be used to test a wide variety of stock market trading strategies.   It is 

discovered that the risk tolerance of the trading strategy gives its best performance in the 12-14% range.  This 

is the amount of tolerance in the trading strategy for a loss on the purchase/sale of a given stock.   
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This parameter is tested below 12% and is found to be too sensitive.  Many of the stocks chosen by the PNN 

often drop up to 10% of its purchased price before rebounding into a profitable scenario.  Therefore, setting 

the risk tolerance below 12% caused the model to prematurely sell stocks at a loss that otherwise would have 

produced the desired profit.  Also, it is discovered that the amount of desired change gives its best 

performance in the 16-19% range.  This is near the peak level of performance of stocks before a market 

correction happens within the specified length of the prediction period.    Results with the previously 

mentioned inputs produce a return of $4,780 over the horizon specified earlier (approximately 3 years and 5 

months) for an initial investment of $5000.  This approximately translates into an annualized return of 22.1%.  

This is calculated using the average return over each 16 week period.  Since it was assumed that profit is taken 

or loss is replaced from/to the initial investment of $5000, a compounded rate-of-return is not calculated.  This 

conservatively calculated return compares favorably with Ibbotson Associates reported returns for large cap 

stocks (15.397%), and long term corporate bond returns (4.802%) over the same time frame. 
 

The inputs are tested to derive optimum profits.  The most profitable prediction period is found to be 14-16 

weeks.  Running the model for less than 14 week predictions did not provide sufficient time for the stock price 

to grow.  Running the model for more than the 16 week prediction period detracted from its ability to 

accurately predict short-term gains.  The model had 1 out of 14 periods (16 weeks per period) where a 17.6% 

return was obtained.  Overall, an average return of $341.43 was achieved for each of the periods tested.  3 out 

of 14 periods posted negative returns with a maximum loss of ($181.04) which translates to a 3.6% loss for 

that period.  However, these losses are included in the overall profit figures.   The results of this study are both 

significant and promising. Future improvements to this study include optimizing the parameters used for 

inputs, and testing different parameters.  Data sets other than the S&P 500 should also be tested.  Questions 

related to domestic versus international, small versus large companies, developed versus undeveloped stock 

markets, are all areas of possible future research.   
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Figure 1:  Illustration of a typical feed-forward neural network. 
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Figure 2:  Object-oriented design for NN-based simulation model. 

 


