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Abstract 

Using U.S. patent records in nanotechnology, we study the relationship between inventor mobility among firms and 

knowledge diffusion. We find evidence consistent with a story that, in one important nanotechnology subfield, when 
inventors move among firms they spread knowledge.  In particular, we find that if we consider any two patents in 

the “Chemicals, misc.” subclass, A and B, where A and B are assigned to different firms and where A is granted 
after B, patent A is more likely to cite patent B if the patent A firm employs an inventor who earlier worked for the 

patent B firm. 
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1. Introduction 

Nanotechnology is one of the fastest-advancing fields in science and technology and is anticipated to make great 

contributions to and possibly fundamentally transform many large and economically important industries such as 

information technology and medicine.  Nanotechnology thus has the potential to have a major impact on 

technological progress and economic growth. The speed with which the benefits of nanotechnology are realized and 

who ultimately enjoys these benefits depend on how nanotechnology diffuses and is transmitted throughout the 

economy and across economies.  Economists and other scholars who study science and technology have long 

suspected that the inter-firm mobility of scientists transmits technological know-how across firms (Arrow, 1962; 

Stephan, 1996), but evidence is often anecdotal and econometric evidence is scarce. In this paper we study the link 

between the mobility of innovators and technological diffusion. When innovators patent, they leave a paper trail.  

We use this trail to follow inventors from firm to firm and measure whether an employer‘s innovation reflects the 

employment history of its inventors. 

Knowledge diffuses across organizations via a number of potential paths, for example, through published patents, 

papers, and textbooks, at conferences where research is presented and where industry and academic research 

personnel comingle, and via informal social networks. 
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1
But a firm also learns about other firms‘ research after employing or collaborating with innovators who work or 

have worked in other firms ‗laboratories.  In fact, social scientists who study innovation suspect that certain kinds 

of important ―things that we know but cannot tell‖ (Polanyi, 1966) —tacit knowledge—become available to a firm 

only with sustained, close interaction with researchers who possess this knowledge as through an employment or 

collaborative research arrangement. 

We propose to examine the role of research personnel as a pathway for the diffusion of ideas in nanotechnology, 

utilizing information contained in U.S.patent records. The inventors behind the patented invention are listed on 

each patent, as are the firms, government organizations, and universities to which the patents are assigned.  Using 

a procedure proposed in Kim, Lee, and Marschke (2008), we match names on patents to construct a panel data set 

of inventors that contains the patents in each year of the inventors‘ careers.  Because the assignee is usually the 

inventor‘s employer, the inventor reveals her employer when she invents. On the occasions that the assignee is not 

the inventor‘s employer, often the inventor is working under an inter-organizational research agreement of some 

kind.  Thus, we interpret the appearance of multiple assignees among an inventor‘s patent portfolio as evidence of 

either job mobility or collaborations across organizational boundaries.  Hiring an inventor formerly employed 

elsewhere and collaborating with another firm in an R&D project are both means by which tacit knowledge can be 

transmitted.   For inventors that invent frequently the U.S. patent data yield the employment and collaboration 

history of inventors. 

At the same time, one can use patent citations to infer the extent to which a patent in one firm accesses the 

knowledge generated by inventors in other firms through patent citations are influenced by firms‘ patenting and 

citing strategies and firms‘ backward patent citations to public research are understated (Roach and Cohen, 2012). 

Patent applicants are legally obligated to disclose any knowledge they have of previous relevant inventions.  The patent 

examiner may add to the application relevant citations omitted by the applicant.  Thus, through the patent citations 

each patent documents the ―prior art‖ upon which the new innovation builds. These citations provide an additional 

window on the pathways of knowledge (for evidence that citations proxy for knowledge flows, see Jaffe, Fogarty, 

and Banks, 1998; and Duguet and MacGarvie, 2005). 

Our principle finding is consistent with a story that, in one important nanotechnology subfield, when inventors 

move among firms, they spread knowledge.  In particular, we find if we consider any two patents in the 

―Chemicals, misc.‖ subclass, A and B, where A and B are assigned to different firms and where A is granted after B, 

patent A is more likely to cite patent B if the patent A firm employs an inventor who earlier worked for the patent B 

firm. 

The paper is organized as follows.  The next section summarizes the literature on technology spillovers, scientist 

collaboration and mobility, and the use of patent citations to trace technological diffusion.  Section III describes 

our data, focusing on the construction of the inventor panel. Section IV describes our empirical strategy and Section 

V describes our results. Section VI offers concluding remarks. 

2. Literature Review 

Nanotechnology is a multidisciplinary area of applied science that includes such disciplines as physics, chemistry, 

and engineering.  According to a definition proposed by the U.S. National Nanotechnology Initiative, 

nanotechnology involves the control and understanding of matter at the approximate scale of 1 to 100 nanometers 

(nm)—a nanometer is one billionth of a meter—and the assembly of useful devices in the nanoscale atom by atom 

or molecule by molecule.  An attraction of the nanoscale environment is that the physical and chemical properties 

of matter change as matter‘s scale gets very small.  A material may become stronger gain transparency or 

conductivity in the nanoscale.  For example, a nanoscale tube of carbon, approximately 1/100,000 the diameter of 

a human hair, is very strong.  Materials composed of carbon nanotubes hold the potential to replace steel in cars, 

for example, vastly increasing cars‘ gas mileage.  Carbon nanotubes possess superior heat and electricity 

conductivity making them ideal materials for electronic devices. The applications of nanotechnology so far, 

however, have been fairly mundane.  The main commercial applications of nanotechnology are in suntan lotions, 

cosmetics, and surface coatings. 

This paper focuses on how technologies—nanotechnologies in particular—diffuse through the economy.  

Understanding how knowledge spillovers within and across economies work is of interest because of the role 

spillovers may play in economic growth and because of its implications for science and technology policy.  Studies 

in both the economics and sociology of innovation literatures argue that new technologies are frequently ―tacit‖ and 

difficult to transmit to the uninitiated via spoken or written communication (Polyani, 1958, 1966).  

                                           
1
 See Cohen, Nelson and Walsh (2002) on the various means by which innovating firms access know-how developed 

externally. See Agrawal, Cockburn, and McHale (2003) for evidence of the importance of social networks in promoting 

diffusion. 
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The most efficient means of transmission across organizational boundaries for tacit knowledge may be via person-

to-person contact involving a transfer or exchange of personnel.  Recent findings that technological diffusion 

appears to be geographically limited (e.g., Jaffe, 1989; Jaffe, Trajtenberg, and Henderson, 1993; Audretsch and 

Feldman, 1996; Zucker, Darby, and Brewer, 1998; and Mowery and Ziedonis, 2001) are often interpreted as 

evidence of the tacitness of knowledge (e.g., Feldman, 1994).  Some survey evidence exists that person-to-person 

interaction is important for the diffusion of technology.  Cohen, Nelson, and Walsh (2002) surveyed R&D 

managers on the means by which they gather and assimilate new technologies and find that firms access externally-

located technology partly through the hiring of and collaboration with researchers from the outside.  Moreover, 

they find that hiring/collaboration with outside researchers is complementary to other means of accessing externally 

produced knowledge, such as through informal communications with outsiders and more formal (such as consulting) 

relationships with outsiders. Sonn and Storper (2008) show the role of geographical proximity has been increasing 

in knowledge production and innovation despite advances in information and telecommunication technologies.  

Much of the literature that examines the mobility of scientists and innovators as a source of knowledge 

transmission focuses on the movement of academic scientists from academe to industry.  Certainly, universities 

and academic ideas are important to the high-technology sector.  A number of recent papers offer evidence for 

geographically localized spillovers occurring in areas around major universities (Jaffe, 1986, 1989; Audretsch and 

Feldman, 1996; Henderson et al, 1998), suggesting both that academe is an important source of commercially-

important ideas and that such ideas are not easily transmitted from the university labs in which they originate to the 

firms where they can be turned into commercial products.    Work by Jensen and Thursby (2001), Agrawal and 

Henderson (2002), and Thursby and Thursby (2002) find that the best predictor that an academic idea leads to 

successful product roll-out is the participation of the inventing scientist. Thus, the hands-on involvement of 

academic scientists may in fact be necessary for an academic idea to take root in industry.  In the biotechnology 

sector, Darby, Zucker and co-authors have examined the importance of working relationships between firms‘ bench 

scientists and top academic, or ―star‖, scientists.  They find that firms in the U.S. and Japan are more likely to enter 

the biotechnology industry in regions where star academics publish (Zucker, Darby, and Armstrong, 1998, 2001; 

Zucker, Darby, and Brewer, 1998; and Zucker and Darby, 2001).  They also find that university influence on 

nearby firm R&D productivity exists almost exclusively in firms whose bench scientists have working relationships 

with star academic scientists.   

Darby, Zucker and co-authors also examine these issues with respect to the nanotech industry.  Zucker and Darby 

(2007) and Darby and Zucker (2003) find evidence of regional agglomeration in both science and commercial 

applications of nanoscience, with firm entry in nanotechnology occurring in the vicinity of the major research 

universities publishing in scientific papers.  Zucker, Darby, Furner, Liu, and Ma (2007) find counts of patents and 

articles in nanotechnology are correlated with the degree of collaboration observed between industry and 

universities (as measured by co-authorship on scientific papers) suggesting that knowledge transfer takes place via 

collaboration and this is conducive to nanotechnology progress. 

The evidence suggests that the interaction between universities and firms, and possibly the movement of academic 

scientists to industry are important in the development of high technology, generally, and the nanotechnology 

industry, in particular.  In this paper, we look at the mobility from firm to firm, within industry, of non-academic 

innovators as a source for knowledge transmission.  Rates of mobility of computer scientists, engineers and 

scientists in industry are very high in many regions of the country.  Job-hopping is such a part of the landscape in 

places like Silicon Valley, that engineers relate, presumably jokingly, that opportunities are so plentiful one can 

change jobs without changing carpools and that they consequently switch jobs so often, that they don‘t even bother 

to tell their spouses.   

But econometric evidence that job to job mobility facilitates transmission of knowledge is indirect and 

circumstantial.  Almeida and Kogut (1999) find that firms are more likely to cite patents of other firms in their 

region if inventor mobility rates are high, offering circumstantial evidence that ideas in the semiconductor industry 

are spread by the movement of key engineers among firms, especially within a geographical area.Song et al (2003) 

show the hiring of engineers who moved from US firms to non-US firms is more likely when hired engineers 

possess technological expertise distant from that of hiring firm, suggesting knowledge transfer by hiring inventors.  

Kim and Marschke (2005) develop and test a model of the patenting and R&D decisions of an innovating firm 

whose scientist-employees sometime quit to join or start a rival.  In their model, the innovating firm patents to 

protect itself from its employees.Kim and Marschke find that firms are more likely to patent in environments where 

scientists are likely to switch employers, suggesting firms perceive a threat that their workers will pass along 

proprietary know-how.  

If such technical knowledge acquired by the researcher in an employer‘s lab can be transmitted to future employers, 

then such knowledge is a form of general human capital.  Researchers would be willing to accept lower wages to 

acquire technical knowledge that they can exploit with multiple employers.   
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Moen (2005) finds some evidence of this: he shows that technical workers in R&D intensive firms in Norway 

accept lower wages early in their career in exchange for higher wages later, evidence that workers trade on the 

intellectual property they acquire in an employer‘s lab.   

Stolpe (2002) examines knowledge diffusion in the field of liquid crystal display.  He employs an empirical 

strategy very similar to the one employed in this paper.  He uses a firm‘s patent citations to evaluate one firm‘s 

access of the knowledge located at another firm.   He finds that sharing inventors does not significantly influence 

two firms‘ likelihood of citing one another and he interprets this finding as evidence that the mobility of innovators 

is not an important means by which knowledge diffuses in the LCD industry. Tóth and Lengyel (2019) find that 

hiring inventors who bridge unconnected parts of the network boosts diverse inter-firm connections of the firm, 

thus facilitates knowledge transfer. 

3. Data 

The focus of this paper is how firm-to-firm mobility of innovators transmit knowledge in the nanotechnology 

industry.  We use patent citations to trace knowledge flows between firms.  We use a unique panel data set on 

inventors that allows us to identify the firms for which inventors have invented.  Using these data we can test 

whether a firm‘s likelihood of citing the patents of other firms reflect the patenting history of its inventors.  In this 

way, we hope to learn whether inventors‘ mobility influences the diffusion of new knowledge. 

The data used in this paper are a part of the inventor-firm panel database that we created (see Kim, Lee and 

Marschke, 2008, for the detailed description of the construction procedure). The data for this paper are derived 

from three sources: (1)Patent Bibliographic data (Patents BIB) released by the U.S. Patent and Trademark Office 

(USPTO) that contain bibliographic information for U.S. utility patents issued from 1975 to 2002; (2) the NBER 

Patent-Citations data collected by Hall, Jaffe and Trajtenberg (2001) which contain all citations made by patents 

granted in 1975-1999; and(3) the Nanobank database collected by Zucker and Darby (2007) that identifies patents 

in nanotechnology. To create our data from these sources, we match inventor names in the Patents BIB database, 

and add information from the citation data. We then select only those patents in nanotechnology based on the 

Nanobank database. The following describes the name matching method. 

Inventor name matching 

Since the 1960‘s the information contained in patent data have been extensively used to investigate various issues 

such as technology spillovers and R&D productivity at the industry or firm level. The information on inventors 

contained in patent data, however, has not been fully utilized possibly because of the difficulty in identifying 

whether two names in the inventor name field from two patents belong to the same inventor. Using inventor‘s name 

(last, first, and middle), address, city, state, zip (often missing), and country at the time of grant of the patent, we 

attempt in this paper to match inventor names and produce each inventor‘s life-cycle productivity in patenting. 

To start, we treat each entry that appears in the inventor name field of every patent in the Patents BIB data as a 

unique inventor. Given N number of names in this name pool, we pair each name with all other names, which 

generates N(N-1)/2 number of unique pairs. The 5.1 million names in the Patents BIB data (2.05 inventors per 

patent) thus produce 13 trillion unique pairs. For each pair, we consider the two names as belonging to the same 

inventor if the SOUNDEX codes of their last names and their full first names are the same, and at least one of the 

following three conditions is met: (1) the full addresses for the pair of names are the same; (2) one name from the 

pair is an inventor of a patent that is cited by another patent whose inventors include the other name from the pair; 

or (3) the two names from the pair share the same co-inventor. In implementing the second and third conditions, we 

make comparisons based on whether the first and last names are spelled identically. After our name matching 

procedure is completed, we go back and check that these conditions are still valid based on the inventor identifier 

constructed by the matching procedure. If not, we repeat the name matching process to create a new inventor 

identifier. 

SOUNDEX is a coded index for last names based on the way a last name sounds in English rather than the way it is 

spelled. Last names that sound the same, but are spelled differently, like SMITH and SMYTH, have the same 

SOUNDEX code. We use the SOUNDEX coding method to expand the list of similar last names to overcome the 

potential for misspellings and inconsistent foreign name translations to English; misspellings are common in the 

USPTO data as are names of non-Western European origin (see Appendix A for the detailed SOUNDEX coding 

method). 

We also consider a pair of names as a match if two have the same full last and first names as spelled in the Patent 

BIB data, and at least one of the following conditions is met: (1) the two have the same zip code; (2) they have the 

same full middle name; or (3) they reside in the same MSA area.  
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Given all pairs of names that are considered as matches by the preceding procedures, we impose an additional 

matching criterion that a pair of names is not treated as a match if their middle name initials are different. We then 

impose transitivity in the following sense: If name A is matched to name B and name B is matched to name C, 

name A is then matched to name C. We iterate this process until all possible transitivity matches are completed. At 

this point we assign the same inventor IDnumber for all the names matched. Using this method, we identified 1.72 

million unique inventors (34%) out of 5.1 million names in the entire patent data. 

After name matching, we add information on all citations from the NBER Patent-Citations data collected by Hall, 

Jaffe and Trajtenberg (2001) where each citing patent that was granted between 1975 and 1999 is matched to all 

patents cited by the patent. As the final step, we select only those patents in nanotechnology that are identified in 

theNanobank database (see Zucker and Darby, 2007, for a description of these data). 

4. Empirical Method 

Nanoscience and nanotechnology can be found across a variety of disciplines and applications.  Figures 1 and 2 

show the patent counts by major technological category by year (we use the aggregated technological classification 

system of Hall, Jaffe and Trajtenberg, 2001). Figure 1 shows all U.S. patents and Figure 2 shows only those 

nanotechnology patents.  Figure 2 shows that the chemistry field dominates nanotechnology patents early on and 

remain dominant throughout the period.  Note that over 25% of chemical patents are classified as nanotechnology.  

Patents in the Electrical and Electronic and Drugs and Medical fields begin to take off in the mid-1980s. 

Figure 1 

All Patents by Field 
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Figure 2  

Nanotechnology Patents by Field 
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Table 1 

Descriptive Statistics 

Nanobank Patents from Subclass 19 (“Chemicals, Miscellaneous”) 

 

Variable Definition Obs. Mean Std. Dev. 

CITE Indicator equal to one if patent cites a

nother subclass 19 patent 

469181 .335 .472 

MOBILITY Indicator equal to one if citing patent 

and assignee of cited/cite-able patent sh

are an inventor 

469181 .006 .076 

LCLAIM_A Log of the number of claims made by

 citing patent 

394353 2.721 .756 

LCLAIM_B Log of the number claims made by cit

ed/cite-able patent 

436496 2.327 .794 

CITELAG Number of years between application d

ates of citing and cited/cite-able patent 

469181 8.111 5.446 

CRECEIVE_A Number of citations received by citing 

patent in 5 years following grant date 

469181 4.170 7.770 

CRECEIVE_B Number of citations received by cited/c

ite-able patent in 5 years following gra

nt date 

469181 10.335 17.216 

CMADE_A Number of citations made by citing pat

ent 

469181 16.517 36.939 

CMADE_B Number of citations made by cited/cite-

ablepatent 

439206 8.084 8.478 

GENERAL_A Generality, citing patent 297967 .326 .292 

GENERAL_B Generality, cited/cite-able patent 421936 .391 .279 

ORIGINAL_A Originality, citing patent 463655 .439 .278 

ORIGINAL_B Originality, cited/cite-able patent 429271 .380 .279 
 

Table 1 reports the means of variables used in our analysis.
2
 In estimating the determinants of a citation, we include, 

in addition to MOBILITY, CITELAG (and its square), the time in years that have elapsed between the cited/cite-

able patent‘s application date and the citing patent‘s application date. We hypothesize that the more recent the 

patent, the greater its likelihood of being cited. We also include LCLAIMS_A and LCLAIMS_B, respectively the 

log of the number of claims made by the citing and cited/cite-able patents. The number of claims represents the 

number of pieces or ―building blocks‖ to the underlying innovation. Hence, the number of claims may be 

informative of the innovative territory covered by the patent.   We expect that patents that cover more ground are 

more likely to be cited.  

The number of citations received in the first five years following the patent‘s grant date, CRECEIVE_A for the 

citing patent and CRECEIVE_B for the cited-cite-able patent, is included as a measure of patent importance.  We 

expect that a patent is more likely to cite another patent if it is important (has high CRECEIVE_B).   

We also include Hall, Jaffe, and Trajtenberg‘s measures of patent originality and generality. Let  be the share of 

citations received by patent that belong to patent class j, out of  patent classes.  Their measure of generality is 

.Note that this is one minus the Herfindahl index: the more diffuse the contribution (the 

greater the number of classes the citations cover) the larger this index. Their measure of originality is defined the 

same way except it is the citations made that are used in the calculation. Thus, if the patent cites patents in only a 

few technologies, the originality measure will be low, whereas if it cites patents across many fields, then the 

measure will be high.  We anticipate that patent A is more likely to cite patent B if B is more general and more 

original. 

5. Results 

Table 2 presents the results from the estimation of various weighted logit models.   

                                           
2
We do not weight the data in the production of the descriptive statistics.  Thus patents in the subclass 19 that cite other 

patents in the same subclass are overrepresented, and patents that do not cite are underrepresented. 

ijs
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Table 2 

Estimating Determinants of Citing Patent in Same Class 

Weighted Logit 

(“Probability that Patent A cites Patent B”) 

Variable Model I 

All 

Model II 

All 

Model III 

Industry→ 

Industry 

 

Intercept -9.55 

(.003) 

-10.701 

(.133) 

-10.781 

(.110) 

 

MOBILITY 7.010 

(.448) 

7.390 

(.493) 

7.331 

(.496) 

.080 

CITELAG  -.154 

(.009) 

-.153 

(.010) 

-.00006
† 

CITELAG
2 

 .014 

(.001) 

.014 

(.001) 

.00002
†
 

LCLAIMS_A  .096 

(.023) 

.119 

(.024) 

.000007 

LCLAIMS_B  .113 

(.014) 

.108 

(.014) 

.000006 

CMADE_A  .015 

(.001) 

.014 

(.001) 

.000009
†
 

CRECEIVE_A  .016 

(.002) 

.019 

(.001) 

.000006
†
 

CMADE_B  -.020 

(.003) 

-.018 

(.003) 

-.000008
†
 

CRECEIVE_B  .027 

(.002) 

.028 

(.002) 

.00001
†
 

GENERAL_A 

 

 .408 

(.057) 

.468 

(.054) 

.000008
†
 

ORIGINAL_A  -.046 

(.043) 

-.040 

(.038) 

-.000001
†
 

GENERAL_B  .941 

(.039) 

.867 

(.043) 

.000017
†
 

ORIGINAL_B  -.343 

(.065) 

-.413 

(.075) 

-.000009
†
 

Obs. 

Wald (p val.)  

Log likelihood 

469181 

245.3 (.0000) 

-355.476 

240599 

5435.6 (.0000) 

-185.162 

225454 

5302.1 (.0000) 

-173.367 

 

Robust standard errors in parentheses.  Marginal effects are from model III. 

†
 

 
 

Models I and II include all data in the analysis, and thus include assignees that are firms, universities, and 

government research labs.  Both the constrained (I) and unconstrained (II) models produce a coefficient estimate 

for MOBILITY that is positive and strongly statistically significant.  Because we are especially interested in the 

mobility among firms, as opposed to mobility between universities and industry, we estimated a logit that contains 

only patents assigned to industry.  The results of this estimation are depicted in model III.  The coefficient 

estimate on MOBILITY is positive and significant, both in the statistical and economic senses.  The fourth column 

depicts the implied marginal effects of the coefficient estimates from model III.  Note that having an inventor on 

patent A who at one time worked for or collaborated with the assignee of patent B, increases A‘s probability of 

citing B by about .08. 

Many of the other coefficient estimates have the anticipated signs.  For example, A is more likely to cite B if B is 

more recent, wider in scope, more general, and more important; most coefficient estimates are statistically 

significant but this is because of the large number of observations.  As column four indicates, however, few 

coefficients imply an important economic or behavioral relationship between the corresponding independent 

variables and the probability of a citation. 

6. Discussion 

We find evidence consistent with a story that, in one important nanotechnology subfield, when inventors move 

among firms they spread knowledge.   

dx

CITEd )1Pr( 

2

xd
CITEd

ln
)1Pr( 
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In particular, we find if we consider two patents in the ―Chemicals, misc.‖ subclass, A and B, where A and B are 

assigned to different firms and where A is granted after B, patent A is more likely to cite patent B if the patent A 

firm employs an inventor who earlier worked for the patent B firm.  

This evidence is consistent with other stories as well, and future work will focus on ruling out the ―mobility causing 

knowledge‖ diffusion story.  Omitted variables make it unwise to infer from our results that mobility is causing 

citations.  For example, different firms share research agendas for reasons unrelated to worker mobility.  In 

addition, inventors have varied skill sets which match better with some research agendas than others.  Thus, we 

would expect that inventors when they move tend to remain in the same research areas and the fact that two firms 

share an inventor is an indication of, and not a cause of, similar research agendas.  And of course, firms with 

similar research areas will cite one another‘s patents.  

We also know that firms which are engaged in similar R&D programs congregate in the same geographical cluster.  

Moreover, workers who switch jobs tend to remain in the same geographical area.  Thus, the fact that two firms 

share the same inventor is an indication of geographical proximity and, again, similar research programs and a 

higher propensity to cite one another‘s work.  This concern may be at least partly addressed by including dummies 

indicating whether the citing and cited firms are in the same geographical cluster.  By focusing on patents in a 

single subclass, we had hoped to reduce this kind of heterogeneity, but this subclass is large and may be quite 

heterogeneous.  In future work, we will experiment with more narrowly defined and homogenous technologies.   

Finally, we realize that there are limits to what we can learn about the role of inventor mobility in the diffusion of 

knowledge from patent citations and patentbased measures of worker mobility.  Patents capture only a small part 

of the economically important knowledge created and diffused through the economy.  Citations are noisy measures 

of the important precursors of innovations.  In addition, because we observe inventors only when they patent, we 

miss much inventor flow between employers.  This latter concern is less troubling, however, if most diffusion 

occurs via the movement of ―star‖ industrial inventors.  Star inventors publish frequently, making them easier to 

follow through their career.  

Appendix A.  SOUNDEX coding system 

A SOUNDEX code for a surname is an upper-case letter followed by 6 digits.  For example, the SOUNDEX code 

for Kim is K500000, while that for Marschke is M620000. The first letter is always the first letter of the surname. 

The rules for generating a SOUNDEX code are:  

1. Take the first letter of the surname and capitalize it. 

2. Go through each of the following letters giving them numerical values from 1 to 6 if they are found in the 

Scoring Letter table (1 for B, F, P, V; 2 for C, G, J, K, Q, S, X, Z; 3 for D, T; 4 for L; 5 for M, N; 6 for R; 0 for 

Vowels, punctuation, H, W, Y). 

3. Ignore any letter if it is not a scoring character. This means that all vowels as well as the letters h, y and w are 

ignored. 

4. If the value of a scoring character is the same as the previous letter, then ignore it. Thus, if two ‗t‘s come together 

in the middle of a name they are treated exactly the same as a single ‗t‘ or a single ‗d‘. If they are separated by 

another non-scoring character, then the same score can follow in the final code. The name PETTIT is P330000. The 

second ‗T‘ is ignored but the third one is not since a nonscoring ‗I‘ intervenes.  

5. Add the number onto the end of the SOUNDEX code if it is not to be ignored. 

6. Keep working through the name until you have created a code of 6 characters maximum. 

7. If you come to the end of the name before you reach 6 characters, pad out the end of the code with zeros. 

8. Optionally you can ignore a possessive prefix such as ‗Von‘ or ‗Des‘. 

See "Using the Census SOUNDEX," General Information Leaflet 55 (Washington, DC: National Archives and 

Records Administration, 1995) for the detailed method. 

References 

Adams, James D. 1990. ―Fundamental Stocks of Knowledge and Productivity Growth.‖ The Journal of Political 
Economy, 98(4), pp. 673-702. 

Adams and Jaffe (1996) ―Bounding the Effects of R&D‖ Rand Journal of Economics (27), 700-721. 

Agrawal, Ajay K., Cockburn, Iain M., and McHale John 2003 ―Gone but Not Forgotten: Labor Flows, Knowledge 

Spillovers, and Enduring Social Capital,‖ NBER Working Paper no. 9950 

Agrawal, A. and Henderson, Rebecca. (2001) ―Putting Patents in Context,‖ Management Science, 48(1): 44-60. 

Arrow, K.J. ―Economic Welfare and the Allocation of Resources for Invention.‖ In R.R. Nelson, ed., The Rate and 

Direction of Inventive Activity: Economic and Social Factors, NBER Special Conference Series. Vol. 13, 

PrincetonUniversity Press, New Jersey, 1962. 

Audretsch and Feldman, 1996. ―R&D Spillovers and the geography of innovation and production, “American 

Economic Review, 86, pp. 630-640 



ISSN 2219-1933 (Print), 2219-6021 (Online)           ©Center for Promoting Ideas, USA            www.ijbssnet.com 

10 

Cohen, Wesley M., Nelson, Richard R., and Walsh, John P. 2000. ―Protecting Their Intellectual Assets: 

Appropriability Conditions and Why U.S. Manufacturing Firms Patent (or Not),‖ NBER Working Paper no. 

7552 

Darby, Michael R. and Zucker, Lynne G. (2003). ―Grilichesian Breakthroughs: Inventions of Methods of Inventing 

and Firm Entry in Nanotechnology," NBER Working Papers 9825. 

Duguet, Emmanuel and MacGarvie, Megan. 2005. "How well do patent citations measure flows of technology? 

Evidence from French innovation surveys," Economics of Innovation and New Technology, 14(5), 375-393 

Hall, B., Jaffe, A. and Trajtenberg, M.  ―Market Value and Patent Citations: A First Look.‖ NBER Working Paper 

No. 7741, 2000. 

Hall, B. H., A. B. Jaffe, and M. Tratjenberg (2001). ―The NBER Patent Citation Data File: Lessons, Insights and 

Methodological Tools.‖ NBER Working Paper 8498. 

Jaffe, Adam B.  (1986) "Technological Opportunity and Spillovers of R&D: Evidence from Firms' Patents, Profits 

and Market Value." American Economic Review, 76, 5, pp. 984-1001. 

Jaffe, Adam B. (1989) ―Real Effects of Academic Research.‖ American Economic Review, 79 957-970 

Jaffe, Adam B., Fogarty, Michael S., and Banks, Bruce A. (1998) ―Evidence from Patents and Patent Citations on 

the Impact of NASA and Other Federal Labs on Commercial Innovation,‖ Journal of Industrial Economics, 

46 (2) , 183–205 

Jaffe, A.B., Henderson, R., and Trajtenberg, M.  (1993) ‖Geographic Localization of Knowledge Spillovers as 

Evidenced by Patent Citations.‖ Quarterly Journal of Economics, 108(3), pp. 577-598. 

Jensen, Richard and Thursby, Marie (2001) ―Proofs and Prototypes for Sale: The Tale of University Licensing,‖ 

American Economic Review, 91(1): 240-259. 

Kim, Jinyoung and Marschke, Gerald, 2005, ―Labor Mobility of Scientists, Technological Diffusion, and the Firm‘s 

Patenting Decision,‖ The Rand Journal of Economics, forthcoming, 2005. 

Manski, C. F. and Lerman, S.R. (1977) ―The Estimation of Choice Probabilities from Choice Based Samples,‖ 

Econometrica, (45), pp. 1977-1988. 

Moen, Jarle. (2005) ―Is Mobility of Technical Personnel a Source of R&D Spillovers?,‖ Journal of Labor 

Economics, 23(1), pp. 81-114. 

Polanyi, Michael. Personal Knowledge: Towards a Post-Critical Philosophy (University of Chicago Press, Chicago, 

1958) 

Polanyi, Michael. The Tacit Dimension (Doubleday, Garden City, NY, 1966) 

Roach, M. and W. M. Cohen (2012). ―Lens or Prism? Patent Citations as a Measure of Knowledge Flows from 

Public Research.‖ NBER Working Paper 18292. 

Singh, Jasjit. (2006) ―Asymmetry of Knowledge Spillovers between MNCs and Host Country Firms,‖ Journal of 
International Business Studies, forthcoming. 

Song, J., P. Almeida and G. Wu (2003). ―Learning-by-Hiring: When Is Mobility More Likely to Facilitate Interfirm 

Knowledge Transfer?‖ Management Science 49(4), 351-365 

Sonn, J.W., & Storper, M. (2008). The increasing importance of geographical proximity in knowledge production: 

An analysis of US patent citations, 1975–1997. Environment and Planning A, 40, 1020–1039. 

Thursby, Jerry and Thursby, Marie. (2002) ―Who is Selling the Ivory Tower? Sources of Growth in University 

Licensing,‖ Management Science, 48(1): 90-104. 

Tóth, G. and B. Lengyel. ―Inter-firm inventor mobility and the role of co-inventor networks in producing high-

impact innovation.‖ Journal of Technology Transfer (2019). https://doi.org/10.1007/s10961-019-09758-5 

Trajtenberg, Manuel, ―The Names Game: Using Inventors Patent Data in Economic Research,‖ Working paper, 

2004. 

Trajtenberg, Manuel.  ―A Penny for Your Quotes: Patent Citations and the Value of Innovations.‖  The Rand 

Journal of Economics.  Vol. 21, No. 1, pp. 172-87, Spring 1990. 

Zucker, Lynne G. and Darby, Michael R.. (2007) ―Socio-Economic Impact of Nanoscale Science: Initial Results 

and NanoBank.‖   In: Roco, M.C., Bainbridge, W.S. (Eds.), Nanotechnology: Societal Implications.  

Springer, The Netherlands. 

Zucker, Lynne G. and Darby, Michael R.. (2001) ―Capturing Technological Opportunity via Japan‘s Star Scientists.‖   

Journal of Technology Transfer, 26, 37-58. 

Zucker, Lynne G., Darby, Michael R., and Armstrong, Jeffery S. (1998) ―Geographically Localized Knowledge: 

Spillovers or Markets.‖ Economic Inquiry36: 65-86. 

Zucker, Lynne G.; Darby, Michael R.; Armstrong, Jeff S. ―Commercializing Knowledge: University Science, 

Knowledge Capture, and Firm Performance in Biotechnology‖ NBER Working Paper No. 8499, October 

2001 

Zucker, Lynne G., Darby, Michael R., and Brewer (1998) ―Intellectual Human Capital and the Birth of U.S. 

Biotechnological Enterprises.‖ American Economic Review 88, 290-306 

about:blank
about:blank
about:blank
about:blank
about:blank
about:blank

