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Abstract 
 

The dynamics of financial volatility shows a behavior characterized by alternating periods of turbulence and relative 

quiet. We suggest modelling it as a mixture memory model where time-varying mixing weights are a function of some 

forcing variable capable of sudden changes. In choosing a mixture approach we rely on previous evidence on the 

presence of a short– and a long–memory component in the observed series. We apply our model to the main Spanish 
stock index (IBEX) using the spread between the sovereign national and German bond rates as the forcing variable. 

The results show a good performance in sample, pointing to the fact that fixed weights may be a limitation to an 
accurate description of volatility behavior. 
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Introduction 
 

In financial econometrics, increasing effort has been devoted to the measurement of volatility of asset prices for the 

interest it has in risk management, derivative pricing, and asset allocation. While GARCH modeling with daily data has 

become common among practitioners, in recent times, a lot of work was poured into the potential for empirical 

applications presented by the availability of intra–daily data. The realized volatility literature has developed techniques 

for estimating the unobservable quadratic variation of an underlying continuous time process for the evolution of asset 

prices, thus suggesting a valid alternative to modeling the conditional variance of returns. In what follows we will not 

dwell on the variety of measures suggested in the literature to take into better consideration phenomena affecting asset 

price formation such as jumps and microstructure noise, and we adopt as a measure of reference the so–called realized 

kernel volatility suggested by Barndorff–Nielsen, Hansen, Lunde and Shephard (2008) which is better equipped against 

these sources of noise. 
 

There is a large debate in the literature about the nature of the high persistence in realized volatility and whether it may 

be the result of some nonlinearity in the process. The HAR model (Corsi, 2009), although formally not a long-memory 

model, can reproduce the observed hyperbolic–type decay of the autocorrelation function of (log–)volatility by 

specifying a sum of volatility components over different horizons. Similarly, a weighted average of past daily realized 

volatility to predict longer period realized variance is the MIDAS approach of Forsberg and Ghysels (2007). Other 

authors adopt a logarithmic transformation and apply linear models on the log of realized variance (Forsberg and 

Ghysels, 2007). Andersen et al. (2007) insert a volatility jump component to capture the abrupt changes characterizing 

the realized volatility, with significant improvements in the forecasting performance. The intuition by Baillie and 

Kapetanios (2007) about the existence of both non linear and long memory components in many economics and 

financial time series is developed by McAleer and Medeiros (2008) who introduce a multiple regime smooth transition 

extension of the HAR: their model is also able to capture the presence of sign and size asymmetries. Bordignon and 

Raggi (2012) propose an elegant solution to combine in the same model the non linearity effects, through a Markov 

switching process, and high persistence, through a fractionally integrated dynamics, capable of improving the accuracy 

of in- and out-of-sample forecasts. Alternatively, concentrating on long memory explanations, Andersen et al. (2003) 

suggest a fractionally integrated autoregressive moving average (ARFIMA) model for log–realized volatility; in 

exchange rate dynamics, Ohanissian et al. (2008) find evidence of long memory as well. However, as noted by Lanne 

(2006), the ARFIMA model may not be optimal for several reasons: a) a simple short-memory ARMA model can be as 

good in forecasting the realized volatility of stock returns as a long-memory ARFIMA model (Pong et al., 2004); b)  
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The parameters of the FI part and ARMA part can capture similar characteristics (Bos et al., 2002); c) a feasible 

ARFIMA model must involve a truncation of the infinite-order lag polynomial in practical applications and hence it is 

an approximation to the “true” model anyway. Corsi et al. (2008) underline how the empirical distributions of 

ARFIMA and HAR residuals, derived from realized volatility series, tend to exhibit yet unmodeled volatility clustering. 

In this respect, the presence of regimes (mixture distribution) is also capable of capturing the slowly decaying 

autocorrelation function of the observed realized volatility series. Maheu and McCurdy (2002, but see also 2007, 2011) 

find strong statistical evidence of regime changes in both the conditional mean and conditional variance of realized 

volatility, using a Markov Switching ARMAX representation, where the transition probabilities and the conditional 

mean of volatility are both functions of the duration of the state. In a GARCH framework, previous contributions had 

addressed regime switching,cf. the SWARCH model (Hamilton and Susmel, 1994), the MS GARCH model (Dueker, 

1997, Klaassen, 2002), and the recent multivariate extensions (Edwards and Susmel, 2003, Higgs and Worthington, 

2004, Gallo and Otranto, 2007, 2008). An alternative way to consider changes in regime is given by smooth transition 

GARCH models (Terasvirta,2009) or other nonlinear models (Terasvirta, 2011). Several other authors indicate the 

presence of level shifts in GARCH (Perron and Qu, 2010) or breaks in unknown points also in GARCH (He and 

Maheu, 2010) as the cause of an apparent high persistence. The issue of time varying underlying level of volatility is 

addressed also by Engle and Rangel (2008), who adapt a spline function in GARCH to capture a low frequency 

component of volatility (which they connect to macroeconomic factors). Scharth and Medeiros (2009) extend a 

regression tree model to accommodate smooth splits in regimes controlled by past cumulated returns which account for 

long-range dependence in volatility. 
 

A different approach favored here is the one adopted by several authors, following the suggestion by Engle (2002; 

extending the logic of the Autoregressive Conditional Duration (ACD) models of Engle and Russell, 1998) who 

suggested the use of a Multiplicative Error Model (MEM) for positive valued processes, namely of the product of a 

conditional expectation that follows a GARCH–type dynamics and a positive valued innovation. 
 

Lanne (2006) has suggested an interesting flexible MEM specification in which the process for realized volatility can 

be seen as a mixture of two Gamma MEMs with different coefficients for the conditional expectation and different 

shape parameters for the Gamma (cf. also Ahoniemi and Lanne, 2009). 
 

In this paper, we pursue an alternative to Lanne (2006) by showing that a double conditional expectation model can be 

improved dropping out the assumption that the two components are both short-memory. In particular, we assume that a 

short memory component is coupled with a long-memory component and that the probability of observing one of the 

two components is time-varying. Thus, we extend the mixture approach even further, by adopting a mixture of a short-

memory Gamma MEM and a long-memory Gamma MEM, constructed modelling the conditional expectation as the 

HAR formulation of Corsi (2009). Moreover, in the application on the Spanish volatility here, the time–varying 

persistent weights are mainly driven by past deviation of the domestic Government bond rate relative to the German 

bond rate. 
 

The paper is organized as follows. In Section 2 we summarize some theoretical results on realized volatility in the 

context of volatility measurement and we summarize some of the features of the Multiplicative Error Model. In Section 

3 we present and discuss the models that will be estimated starting from the basic Asymmetric MEM and ending with a 

formulation including a first component for short-memory features, a second component for long-memory and a 

specific equation for the dynamics of the mixing weight. Section 4 illustrates the results obtained from the different 

models applied to the annualized realized volatility of the return rates of the IBEX index. We show that a better fit is 

obtainable with a mixture memory model when the mixing weight is assumed to be time-varying. Section 5 concludes. 
 

2. A Multiplicative Error Model for Realized Volatility 
 

Various arguments can justify the interest in the high–frequency based measures of volatility(cf. various survey papers 

by Andersen, Bollerslev and Diebold included in the references). Andersen and Bollerslev (1998) pointed out that 

squared daily returns are a noisy measure of variation: with simulation arguments they show that Mincer–Zarnowitz 

type regressions of squared returns on any conditional variance forecast would produce a very low R2. Given that 

volatility or variance of returns is not observed, it has to be substituted with a proxy whose measurement error should 

vanish under certain conditions. One solution suggested is to refer to the availability of ultra–high frequency data on 

prices and to compute a variable called realized variance, constructed as 

𝑟𝑣𝑡
2 𝜏 =  𝑟𝑡−1+𝑖𝜏

2

1/𝜏

𝑖=1

=   𝑝𝑡−1+𝑖𝜏 − 𝑝𝑡−1+(𝑖−1)𝜏 
2

1/𝜏

𝑖=1
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Where the generic term r_(t-1+iτ) is the return measured intra–daily as the log-price difference of an asset over a (very 

small) period so that its reciprocal is an integer value, representing the number of intradaily time intervals during the 

day. When τ=1 we get squared returns back; common choices are fractions of the trading day corresponding to five 

minutes or thirty minutes intervals. The theoretical support for such an approach stems from the fact that, under suitable 

conditions, as converges to zero, this measure converges to the integrated variance, that is the integral over a short 

period of the instantaneous (or spot) volatility of an underlying continuous time diffusion process. Other possible 

features of the phenomenon could be accommodated, such as the presence of jumps or of market microstructure noise 

(Barndorff–Nielsen and Shephard, 2002, 2004, 2006; Hansen and Lunde, 2006). In particular, Barndorff-Nielsen, 

Hansen, Lunde and Shephard (2008) suggest a more refined measure, called realized kernel volatility, in which the 

daily variance is estimated as: 

𝑟𝑣𝑡 =  𝑘 
𝑕

𝐻 + 1
 

𝐻

𝑕=−𝐻

 𝑝𝑡−1+𝑗𝑝𝑡−1+𝑗−|𝑕|

𝑛

𝑗= 𝑕 +1

 

In what follows we will consider the square root of realized kernel variance (referred to as realized volatility), a non-

negative valued series. We will model it as a multiplicative process of the form 

𝑟𝑣𝑡 = 𝜇𝑡𝜉𝑡  

Where ξ_t is an iid stochastic process with unit conditional expected value and variance ϕ, and μ_t is the conditional 

expectation of realized volatility. By adopting a GARCH-type structure for μ_t, we get a Multiplicative Error Model to 

describe the dynamics of the conditional expectation of realized volatility, in its general MEM (q,p) form. 

𝜇𝑡 = 𝜔 +  𝛼𝑗 𝑟𝑣𝑡−𝑗 +

𝑞

𝑗=1

 𝛽𝑗𝜇𝑡−𝑖

𝑝

𝑖=1

 

Following Engle and Gallo (2006), it is now standard practice to consider a Gamma specification forξ_t with one 

parameter (as a result of the unit mean constraint): in fact, such a specification turns out to entail the independence of 

parameter estimates for μ_ton the value of the shape parameter of the Gamma. 
 

Since a MEM is a generalization of an ACD model (Engle and Russell, 1998), it is natural to extend the specification of 

the innovation term to accommodate more flexibility and allow for a better fit. As we will see, it is not necessarily an 

issue of obtaining a model which better predicts the conditional expectation (many different assumptions provide 

substantially equivalent forecasts), as much as one of having a flexible tool which can adapt to the varying market 

conditions. We are aiming at a better fit of the density of the distribution altogether, a task which proves useful when 

we need to derive confidence intervals for expected volatility or evaluate the probability of high values of volatility 

(say, in a scenario framework). 
 

The models to be compared: common structure and different mixture hypotheses The strategy is to consider a common 

structure 
 

𝑟𝑣𝑡 =  
𝜇1𝑡𝜉1𝑡 𝑤𝑖𝑡𝑕 𝑝𝑟𝑜𝑏 𝜋𝑡

𝜇2𝑡𝜉2𝑡 𝑤𝑖𝑡𝑕 𝑝𝑟𝑜𝑏 (1 − 𝜋𝑡)
  

With a corresponding density function for the innovation 

𝑓  
𝑟𝑣𝑡
𝜇𝑡

|𝐼𝑡−1 = 𝜋𝑡𝑔  
𝑟𝑣𝑡
𝜇1𝑡

|𝐼𝑡−1;𝜽1 + (1 − 𝜋𝑡)𝑔  
𝑟𝑣𝑡
𝜇2𝑡

|𝐼𝑡−1;𝜽2  

Moreover, we define the dummy variable 

𝐷𝑡 =  
1 𝑟𝑣𝑡 < 0

0 𝑜/𝑤𝑖𝑠𝑒
  

According to the equations of μ_1tandμ_2t, the distributional assumptions on ξ_1tandξ_2t, and the dynamics of π_twe 

obtain different models. 
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3.1 The Asymmetric Multiplicative Error Model (AMEM) 
 

The basic MEM model in its asymmetric version (Engle and Gallo, 2006) is obtained when we do not assume the 

existence of a mixture (π_t=1), that is 

𝜇1𝑡 = 𝜇𝑡 = 𝜔 +  𝛼𝑗 𝑟𝑣𝑡−𝑗 +

𝑞

𝑗=1

 𝛽𝑗𝜇𝑡−𝑖

𝑝

𝑖=1

+ 𝛾𝐷𝑡−1𝑟𝑣𝑡−1 

With 

𝜉1𝑡 = 𝜉𝑡 ∼ 𝐺𝑎  𝜆,
1

𝜆
  

3.2 The AMEM with a mixture of innovations 
 

The second model takes into account the innovations as a mixture of two Gamma distributions. The idea of using a 

mixture of distributions has a long tradition in the financial literature given its ability to capture the heterogeneity of the 

market. In an ACD framework De Luca and Gallo (2004) have studied the mixture of two exponential distributions 

with a fixed mixing weight. From the general formulation a first extension considers two unit-mean Gamma random 

variables (constrained MAMEM) 

𝜇1𝑡 = 𝜇2𝑡 = 𝜇𝑡 = 𝜔 +  𝛼𝑗 𝑟𝑣𝑡−𝑗 +

𝑞

𝑗=1

 𝛽𝑗𝜇𝑡−𝑖

𝑝

𝑖=1

+ 𝛾𝐷𝑡−1𝑟𝑣𝑡−1 

With 

𝜉1𝑡 ∼ 𝐺𝑎  𝜆1,
1

𝜆1
 

𝜉2𝑡 ∼ 𝐺𝑎  𝜆2,
1

𝜆2
 

𝜋𝑡 = 𝜋

 

Such that E (ξ_1t )=E(ξ_2t )=1. 

The second extension is less restrictive, because it is imposed a unit mean to the mixture, regardless of the expected 

values of the components of the mixture (unconstrained MAMEM). Then 

𝜇1𝑡 = 𝜇2𝑡 = 𝜇𝑡 = 𝜔 +  𝛼𝑗 𝑟𝑣𝑡−𝑗 +

𝑞

𝑗=1

 𝛽𝑗𝜇𝑡−𝑖

𝑝

𝑖=1

+ 𝛾𝐷𝑡−1𝑟𝑣𝑡−1 

With 

𝜉1𝑡 ∼ 𝐺𝑎 𝜆1,𝛾1 

𝜉2𝑡 ∼ 𝐺𝑎 𝜆2,𝛾2 
𝜋𝑡 = 𝜋

 

The parameter γ_2has to be constrained  

𝛾2 = (1 − 𝜋𝑡𝜆1𝛾1)/( 1 − 𝜋𝑡 𝜆2) 

Such that E(ξ_t )=1. 
 

3.3The Lanne Model (fixed weights) 
 

Lanne’s (2006) suggestion is to take a mixture of two Gamma densities (with constant weights) and specify two 

equations with separate coefficients for the conditional expectations. In terms of our notation this latter approach 

amounts to the following setup 
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𝜇1𝑡 = 𝜔1 +  𝛼1𝑗𝑟𝑣𝑡−𝑗 +

𝑞

𝑗=1

 𝛽1𝑖𝜇𝑡−𝑖

𝑝

𝑖=1

+ 𝛾1𝐷𝑡−1𝑟𝑣𝑡−1

𝜇2𝑡 = 𝜔2 +  𝛼2𝑗 𝑟𝑣𝑡−𝑗 +

𝑞

𝑗=1

 𝛽2𝑖𝜇𝑡−𝑖

𝑝

𝑖=1

+ 𝛾2𝐷𝑡−1𝑟𝑣𝑡−1

 

While 

𝜉1𝑡 ∼ 𝐺𝑎  𝜆1,
1

𝜆1
 

𝜉2𝑡 ∼ 𝐺𝑎  𝜆2,
1

𝜆2
 

𝜋𝑡 = 𝜋

 

With a corresponding density function for the innovation 

𝑓  
𝑟𝑣𝑡
𝜇𝑡

|𝐼𝑡−1 = 𝜋𝑔  
𝑟𝑣𝑡
𝜇1𝑡

|𝐼𝑡−1;𝜽1 + (1 − 𝜋)𝑔  
𝑟𝑣𝑡
𝜇2𝑡

|𝐼𝑡−1;𝜽2  

Where μ_1tand μ_2tare the conditional expectations in each of the two regimes and ξ_1tandξ_2tareGamma random 

variables with unit expected values. As a result, the overall conditional expectationμ_titselfcan be seen as a mixture of 

two conditional expectations. 
 

3.4 The Mixture Memory MEM (fixed weights) 
 

We may want to go a step further and extend the Lanne model in two ways. Firstly, we intend to introduce a new 

equation for μ_2twhich takes into account the long-memory features of realized volatility. Our idea is that of adopting a 

realized volatility model including a short-term component represented by an AMEM(q,p) formulation and a long-

memory component represented by a conditional expected value following a formulation inspired by the 

Heterogeneous Autoregressive (HAR) equation (Corsi, 2009). We define it Heterogenous Asymmetric MEM 

(HAMEM) component. The weights of two components are fixed. So wehave 

𝜇1𝑡 = 𝜔1 +  𝛼1𝑗𝑟𝑣𝑡−𝑗 +

𝑞

𝑗=1

 𝛽1𝑖𝜇𝑡−𝑖

𝑝

𝑖=1

+ 𝛾1𝐷𝑡−1𝑟𝑣𝑡−1

𝜇2𝑡 = 𝜔1 + 𝛿1𝑟𝑣𝑡−1 + 𝛿2  𝑟𝑣𝑡−𝑖 +

5

𝑖=1

𝛿3  𝑟𝑣𝑡−𝑖

22

𝑖=1

+ 𝛾2𝐷𝑡−1𝑟𝑣𝑡−1

 

With 

𝜉1𝑡 ∼ 𝐺𝑎  𝜆1,
1

𝜆1
 

𝜉2𝑡 ∼ 𝐺𝑎  𝜆2,
1

𝜆2
 

𝜋𝑡 = 𝜋

 

In the second regime, the expected realized volatility is affected by past realized volatilities at different frequencies. In 

more detail ∑_(i=1)^5▒〖rv〗_(t-i) is the realized volatility of the last week, and ∑_(i=1)^22▒〖rv〗_(t-i) is the 

realized volatility of the last month. The dummy term is kept. 
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3.5 The Mixture Memory MEM (time-varying weights) 
 

The assumption that the mixing proportion π_t is a constant may exclude many real situations, so our ultimate proposal 

is that of introducing a dynamics for π_t: 

𝜇1𝑡 = 𝜔1 +  𝛼1𝑗𝑟𝑣𝑡−𝑗 +

𝑞

𝑗=1

 𝛽1𝑖𝜇𝑡−𝑖

𝑝

𝑖=1

+ 𝛾1𝐷𝑡−1𝑟𝑣𝑡−1

𝜇2𝑡 = 𝜔1 + 𝛿1𝑟𝑣𝑡−1 + 𝛿2  𝑟𝑣𝑡−𝑖 +

5

𝑖=1

𝛿3  𝑟𝑣𝑡−𝑖

22

𝑖=1

+ 𝛾2𝐷𝑡−1𝑟𝑣𝑡−1

 

With 

𝜉1𝑡 ∼ 𝐺𝑎  𝜆1,
1

𝜆1
 

𝜉2𝑡 ∼ 𝐺𝑎  𝜆2,
1

𝜆2
 

𝜋𝑡 = Λ 𝜙0 + 𝜙1𝐷𝑡−1𝑟𝑣𝑡−1 + 𝜙2𝑆𝑃𝑅𝐸𝐴𝐷[𝑡−1] + 𝜙𝜋𝑡−1 

 

Where 

Λ 𝑥 =
exp⁡(𝑥)

1 + exp⁡(𝑥)
 

In the logistic equation of π_t we include the one-lagged realized volatility multiplied by the one-lagged dummy 

variable assuming value 1 if the one-lagged return is negative, the variable 〖SPREAD〗_([t-1])which denotes the 

value of the spread between government and German bond yields at the last available time before time t,  and finally an 

autoregressive term of the weight. In the presence of a negative coefficient ϕ_2, a higher spread involves a lower value 

of π_t, which implies more weight to the long-memory component of the volatility. For sake of comparison we also 

consider the Lanne model with time-varying weights following the above dynamics. 
 

4. Real data analysis 
 

In this application, we consider the daily annualized realized volatility (5-minute) of IBEX35 index, the benchmark 

stock market index of the Madrid stock exchange, from Jan. 2, 2002 to Dec. 30, 2011 (http://realized.oxford-

man.ox.ac.uk). 
 

Figure 4 displays the plot of the annualized realized volatility and the estimated autocorrelation function is drawn up to 

lag 50. A high persistent nature of the realized volatility is observed. 
 

A short memory model which does not take into account this feature can be misleading in fitting and forecasting the 

series. 
 

Tables 1–4 report the estimates of the models described in the previous section. The first table contains the estimates of 

the basic AMEM, with and without a mixture of distributions assumption. It is clear that the mixture hypothesis 

remarkably increases the fit of the model, as we can see looking at the mean log-likelihood and at the Akaike 

Information Criterion (AIC), in particular when the hypothesis of unit mean on the two components of the mixture is 

replaced by the hypothesis of unit mean on the mixture. 
 

In Table 2, two Lanne models are estimated with different orders for the second component. They offer a better fit with 

respect to the basic models, and in particular the formulation withp = q = 1 for the second component is slightly better 

in terms of AIC. Note that the asymmetric component is significant in both the components in both the models. 
 

Then, we introduce the mixture memory models. The first case refers to a fixed weight scheme. For the second 
component we consider both a model where the last term is the realized volatility of the last week (5 days) and a model 

where the last term is the realized volatility of the last month (22 days). The results are good but, surprisingly, not 

superior to the Lanne models. As suggested by Lanne (2006), although the mixture-MEM model is a short-memory 

model, the parameter estimates can produce rather slowly decaying autocorrelation functions. 
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Finally, let us illustrate the behavior of two time-varying weights models. We have selected the best Lanne model, that 

is the model with AMEM(2,1) and AMEM(1,1) components, and the best mixture memory model, the HMEM(22). 

The estimates are reported in table 4. The Akaike information criterion shows a clear improvement compared to fixed 

weights model. In particular, the mixture memory model has the lower AIC. The dynamics of the estimated time-

varying mixing weight appears to be quite erratic (see Figure 4). What is evident is that periods of high volatility are 

strongly associated with low values of π_t (we report that the correlation coefficient between the two variables is equal 

to -0.65, without claiming, however, the linearity of the relationship). This means that the increase of volatility reduces 

the weight of the short-memory component of the mixture in favor of the long-memory component. 
 

Figures 2 and 3 report the observed and fitted realized volatility for the simple AMEM(2,1) and for the most effective 

model, the mixture memory model with time-varying weights. Moreover, it is also drawn their differences, that is 〖rv

〗_t-(rv) ̂_t. We can observe that for the basic model considered the differences tend to have a positive average, and 

that positive differences are much more stronger than negative differences. In second case, the average difference is 

null, and some positive peaks observed in the basic model tend to be less pronounced. This means that the last 

formulation is able to capture in a better way the peaks of volatility. 
 

We have performed an extensive one-step-ahead prediction analysis carrying out 252 recursive estimates of the models. 

In detail, given a model, we have initially considered the observations from the beginning to 2010/12/31 (check), so to 

obtain the prediction of the annualized realized volatility one-day-ahead. Then we have added one observation to the 

sample, we have reestimated the model and computed next one-step-ahead prediction, and so on until the last 

prediction at 2011/12/31 (check). The models considered are:  
 

 AMEM(2,1) 

 Constrained MAMEM(2,1) 

 Unconstrained MAMEM(2,1) 

 LANNE(2,1)+(2,0), fixed weights 

 LANNE(2,1)+(1,1), fixed weights 

 MixMemAMEM(2,1)+HAMEM(5) 

 MixMemAMEM(2,1)+HAMEM(22) 

 LANNE(2,1)+(1,1), time-varying weights  

 MixMemAMEM(2,1)+HAMEM(22), time-varying weights 
 

The computation of the root mean squared error (Table 5) favors the last model in a clear way. The mixture memory 

with the short-memory component represented by the AMEM model and the long-memory component represented by 

the HAMEM, with time-varying mixing weights, is the model which provides the best one-day-ahead forecasts. Future 

research will examine the h-step-ahead predictions (h > 1). 
 

1. AMEM(2,1) 

2. Constrained MAMEM(2,1) 

3. Unconstrained MAMEM(2,1) 

4. LANNE(2,1)+(2,0), fixed weights 

5. LANNE(2,1)+(1,1), fixed weights 

6. MixMemAMEM(2,1)+HAMEM(5) 

7. MixMemAMEM(2,1)+HAMEM(22) 

8. LANNE(2,1)+(1,1), time-varying weights  

9. MixMemAMEM(2,1)+HAMEM(22), time-varying weights 
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Table 1: Basic Asymmetric Multiplicative Error Models (standard errors in brackets). 
 

Parameter AMEM(2,1) 
Constrained 

MAMEM(2,1) Unconstrained MAMEM(2,1) 

𝜔 0.0021 (0.0004) 0.0013 (0.0003) 0.0012 (0.0003) 

𝛼1  0.4191 (0.0224) 0.3988 (0.0216) 0.3855 (0.0217) 

𝛼2  -0.2144 (0.0338) -0.2259 (0.0310) -0.2220 (0.0308) 

𝛽1 0.7548 (0.0256) 0.7939 (0.0220) 0.8057 (0.0213) 

𝛾 0.0524 (0.0071) 0.0450 (0.0061) 0.0448 (0.0061) 

𝜋1 - 0.9214 (0.0237) 0.8854 (0.0298) 

𝜆1 0.0540 (0.0015) 0.0390 (0.0020) 0.0352 (0.0021) 

𝜆2 - 0.2282 (0.0438) 0.1785 (0.0280) 

𝛾1 - - 27.6548 (1.5826) 

Mean log-lik 1.9736 2.0075 2.0165 

AIC -3.9425 -4.0087 -4.0258 
 

Table 2: Lanne models, fixed weights (standard errors in brackets). 
 

Parameter AMEM(2,1)+AMEM(2,0) AMEM(2,1)+AMEM(1,1) 

𝜔1 0.0007 (0.0002) 0.0006 (0.0002) 

𝛼11  0.3227 (0.0269) 0.3287 (0.0278) 

𝛼12  -0.1853 (0.0331) -0.1951 (0.0343) 

𝛽1 0.8316 (0.0202) 0.8379 (0.0203) 

𝛾1 0.0409 (0.0060) 0.0385 (0.0062) 

𝜔2 0.0303 (0.0071) 0.0225 (0.0068) 

𝛼121  0.7135 (0.1062) 0.6255 (0.1155) 

𝛼22  0.1582 (0.1006) - 

𝛽2 - 0.2462 (0.1095) 

𝛾2 0.1442 (0.0495) 0.1663 (0.0507) 

𝜋1 0.8276 (0.0349) 0.8200 (0.0371) 

𝜆1 0.0335 (0.0019) 0.0332 (0.0020) 

𝜆2 0.1064 (0.0117) 0.1048 (0.0114) 

Mean log-lik 2.0240 2.0245 

AIC -4.0385 -4.0394 
 

Table 3: Mixture memory realized volatility models with AMEM(2,1) and HAMEM(r) components, fixed weights (standard errors in brackets). 
 

Parameter r = 5 r = 22 

𝜔1 0.0007 (0.0002) 0.0006 (0.0002) 

𝛼11 0.3234 (0.0268) 0.3333 (0.0259) 

𝛼12 -0.1835 (0.0335) -0.2171 (0.0337) 

𝛽1 0.8287 (0.0208) 0.8568 (0.0214) 

𝛾1 0.0413 (0.0061) 0.0366 (0.0059) 

𝜔2 0.0307 (0.0077) 0.0368 (0.0090) 

𝛿1  0.7196 (0.1314) 0.6447 (0.1436) 

𝛿2  0.0311 (0.0272) 0.1101 (0.0520) 

𝛿3  -0.0162 (0.0093) 

𝛾2  0.1408 (0.0505) 0.1422 (0.0519) 

𝜋 0.8320 (0.0356) 0.8417 (0.0339) 

𝜆1 0.0337 (0.0020) 0.0343 (0.0020) 

𝜆2  0.1076 (0.0119) 0.1043 (0.0119) 

Mean log-lik 2.0234 2.0245 
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Table 4: Lanne model with AMEM(2,1) and AMEM(1,1) components, time-varying weigths. Mixture memory 

realized volatility models with AMEM(2,1) and HAMEM(22) components, time-varying weights (standard 

errors in brackets). 
 

Parameter Lanne model Mixture memory model 

𝜔1 0.0008 (0.0002) 0.0007 (0.0002) 

𝛼11 0.3135 (0.0245) 0.3156 (0.0243) 

𝛼12 -0.1692 (0.0308) -0.1945 (0.0309) 

𝛽1  0.8251 (0.0194) 0.8518 (0.0201) 

𝛾1  0.0373 (0.0058) 0.0331 (0.0056) 

𝜔2  0.0496 (0.0097) 0.0552 (0.0107) 

𝛼21  0.7299 (0.0990) - 

𝛽2  0.0694 (0.0979) - 

𝛿1  - 0.6396 (0.1082) 

𝛿2  - 0.0846 (0.0361) 

𝛿3  - -0.0134 (0.0064) 

𝛾2  0.1203 (0.0471) 0.1079 (0.0494) 

𝜙0  -0.7700 (0.5636) 0.1313 (1.6921) 

𝜙1  -2.8951 (0.9028) -3.5434 (1.1879) 

𝜙2  -0.1688 (0.0729) -0.2838 (0.2191) 

𝜙 3.4268 (0.6033) 2.5205 (1.8522) 

𝜆1  0.0341 (0.0017) 0.0342 (0.0017) 

𝜆2  0.0969 (0.0102) 0.0902 (0.0098) 

Mean log-lik 2.0235 2.0337 

AIC -4.0532 -4.0547 
 

Figure 1: Ibex - Annualized realized volatility (5 min) and estimated autocorrelation function 

AIC -4.0381 -4.0387 
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Figure 2: Top: IBEX annualized realized volatility 〖rv〗_t(blue) and fitted realized volatility (rv) _̂t 

(red) from the AMEM(2,1) model. Bottom:〖rv〗_t-(rv) _̂t. 

 
Figure 3: Top: IBEX annualized realized volatility 〖rv〗_t (blue) and fitted realized volatility (rv) _̂t (red) from 

the AMEM(2,1)+HAMEM(22) mixture model withπ_t=Λ(ϕ_0+ϕ_1 D_(t-1) 〖rv〗_(t-1)+ϕ_2 〖SPREAD〗_([t-

1])+ϕπ_(t-1) ). Bottom:〖rv〗_t-(rv) _̂t. 
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Figure 4: Top: IBEX annualized realized volatility〖rv〗_t. Bottom: the estimated mixing weightπ_tfor the 

time-varying mixture memory model. 

 
 

Table 5: Mean-squared error for 252 one-step-ahead prediction of annualized realized volatility 
 

Model Meansquared error 

AMEM(2,1) 0.0039 

ConstrainedMAMEM(2,1) 0.0040 

UnconstrainedMAMEM(2,1) 0.0040 

LANNE(2,1)+(1,1) 0.0039 

MMAMEM(2,1)+HAMEM(22) 0.0040 

LANNE(2,1)+(1,1)tv 0.0039 

MMAMEM(2,1)+HAMEM(22)tv 0.0036 
 

5. Concluding Remarks 
 

In this paper, we have introduced a mixture-memory specification for the analysis of realized volatility which takes into 

account both a short-memory and a long-memory component. The short-memory component is represented by an 

AMEM(2,1) while the long-memory part is given by a formulation that resembles the Heterogenous Autoregressive 

model of Corsi (2009). The novel formulation is estimated under two hypotheses about the weights. We first assume 

fixed weights, obtaining results which are substantially the same as the benchmark Lanne model. We then propose 

some richer dynamics for the time-varying mixing weights is proposed, where the latter are assumed to be a function of 

some forcing variable. In our application on the Spanish reference index IBEX, we chose such a variable to be the 
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lagged one spread between the Spanish Bonos and the German Bund yields. We get a strong improvement in terms of 

in sample performance with better fit and diagnostics than the benchmark. In one step-ahead forecasting, our model has 

a mean square error which is substantially lower than the benchmark and our previous suggestion. The final comment 

is that the turmoil originating in the bond market when the Southern European countries came under attack with fears 

of a severe crisis involving the Euro is a relevant determinant of which dynamics rules stock market volatility. 
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