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Abstract 
 

Using the Mangat (1994) randomized response model improved logit estimation is proposed and it is 

compared with the Hussain and Shabbir (2008) logit estimation at equal level of privacy protection. The 

proposed logit estimation has also been compared with ordinary logit estimation. The proposed estimation is 

observed to be better than Hussain and Shabbir (2008) logit estimation. The case of missing observations has 

also been dealt with through EM algorithm. 
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1 Introduction 
 

In an analysis using regression models, we generally assume that the data at hand have been generated by a 

mathematical model (function) whose parameters are unknown, and we must estimate those underlying 

parameters. Ordinary regression is used to forecast a continuous outcome. Logistic Regression is used when 

the outcome (regressand) is dichotomous: yes/no. Logistic Regression has been used by many authors in 

different fields of Psychology like Psychopathology (Clark and Beck (1991)), Pediatric Psychology (Freidrich 

et al. (1986)), Clinical Psychology (Waldman and Rhee (2002)), Cognitive Psychology (Bradley (1988)), 

Community Psychology (Hedeker et al. (1994)), Exercise and Sports studies (Capel (1986)), Human Genetics 

(Waldman et al. (1999)) and many others.  In such studies, certainly, the outcome variables may be more 

likely to be sensitive, e.g. sexual abuse, addiction to Drugs, committing a fraud, Shoplifting, tax evasion, 

induced abortion, illegal Sex, etc. In summary, Logistic Regression provides a powerful tool for improved 

understanding of how the independent factors can be used accurately to assess likelihood of occurrence of a 

category of a dichotomous variable.  
 

In Psychological or Behavioral studies dichotomies are attention-grabbing. Some are so appealing that we go 

to a great length to cram them. Did the person use a drug? Did the voter vote for Party A? Did the player use 

his best strategy in a contest?  Did a War break out? Had a woman induced abortion? Did a person pay full 

tax? Had a person involved in fraud? Had a person ever visited adult website? etc. In studies like asking about 

the preference of ice cream flavors, books, late-night hosts, cooking oil, fashion, etc. we have a little or no 

reason to suspect the truthfulness of the responses and it is assumed that what we have observed is what had 

happened in reality. But when a question of sensitive nature is posed to the respondents they may disapprove 

their affirmative actions about these sensitive traits. For instance, asking about visiting adult website, 

committing a fraud, using marijuana, may result in an evasive answer because affirmative response on visiting 

adult website is simple embarrassing or socially unacceptable, affirmative action on tax evasion is illegal, and 

so on. In these situations expecting an honest response may be little bit optimistic.  
 

For self-reported data, assumption of true responses on sensitive issues may be questionable because the 

respondents have incentives in reporting less than truthful answers. Moreover, it may happen in a sensitive 

study that a respondent refuses to respond at all. Thus procurement of trustworthy data in sensitive 

psychological surveys is an important issue.To increase the response rate and lessen the evasive answer bias in 

the estimators, Warner (1965), for the first time, proposed an ingenious survey method, called Randomized 

Response Technique (RRT). Warner’s model consists of two complimentary questions A  and 
cA  to be 

answered on probability basis, where A  is “do you possess the sensitive trait”, and 
cA  is “do you not possess 

the sensitive trait”. The two questions A  and 
cA   are offered to respondents with preset probabilities P and 

1 P−  respectively. A big amount of developments and variants of Warner’s RRT have been suggested by a 

number of researchers. Greenberg et al. (1969), Mangat and Singh (1990), Mangat (1994), Singh et al. (1998), 

Christofides (2003), Kim and Warde (2004), Hussain and Shabbir (2007, 2010) are some of the many to be 

cited.  
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For a comprehensive note the attracted readers may be referred to Chaudhuri and Mukerjee (1998) and Tracy 

and Mangat (1996). Using the Warner (1965) RRT, Hussain and Shabbir (2008) proposed a hidden logit 

estimation method and established that hidden logit estimation through Warner (1965) RRT give the estimates 

closer to the results what could had been observed through the true data, but using RRT resulted in decreased 

precision of the estimates. In this article, we intend to use Mangat (1994) RRT in logit estimation due to its 

simplicity and increased precision compared to Warner (1965) RRT with and without taking care of privacy 

protection to the respondents. The case when some observations are lost due to any reason is also the subject 

of our study. The paper is organized as: Section 2 describes Hussain and Shabbir (2008) hidden logit 

estimation, briefly. In Section 3, we present the derivation of hidden logit estimation through Mangat (1994) 

RRT. Section 4 is comprised of a comparative study followed by a hidden logit estimation using EM algorithm 

in Section 5. Finally Section 6 concludes the findings of the study. 
 

2 Hussain and Shabbir hidden logit estimation 
 

Hussain and Shabbir (2008) used Warner (1965) RRT to estimate the hidden logits.  As discussed earlier, 

Warner’s model consists of two complimentary questions A  and 
cA  to be answered on probability basis, 

where A  is “do you possess the sensitive trait”, and 
cA  is “do you not possess the sensitive trait”. The two 

questions A  and 
cA   are offered to respondents with preset probabilities P and 1 P−  respectively. Using 

simple random sampling without replacement (SRSWOR) sampling, the i
th
 selected respondent is asked to 

select a question (  or c
A A ) and report yes if his/her actual status matches with selected question and no 

otherwise. Suppose the population proportion of individuals with sensitive trait is π . Then the probability of a 

yes response for a particular respondent is then given by 

( ) ( )( )1 1
r

P yes P Pθ π π= = + − − ,                                                                     (1) 

where P is the probability of selecting question A . 

From (1) it can be written that   

( )1

2 1

P

P

θ
π

− −
=

−
.                                                             (2) 

 As the interest of their study was to model the true probability of an event of interest (using marijuana) as a 

function of a set of independent psychological, social, or economic factors such that  ( ),f Xπ β=  and the 

true probability π is unobservable,  they assumed logistics regression function for θ  and modeled the log-

odds ratio of the θ as  

  log
1

i
i

i

X
θ

β
θ

 
′= 

− 
,               (3)   

where 
( )1

1

i

i

X

i X

Pe P

e

β

β
θ

+ −
=

+
 , iX is the vector of  

th
i observation on independent factors and β is the unknown 

vector of parameters. 

For 1P = , (3) becomes an ordinary logistic regression function derived from direct responses. They 

established that maximum likelihood estimator of β  cannot be derived because setting derivative of log-

likelihood function i.e.
0

β

∂
=

∂

l  ( l is log-likelihood function of the observed data), cannot be solved analytically. 

Therefore, they obtained the numerical estimates of β .          
  

3 Proposed Hidden Logit estimation 
 

Consider the RRT proposed by Mangat (1994) which requires a respondent to say yes if he/she   possesses the 

sensitive trait and to use Warner (1965) RRT with probability of a sensitive question as 1P , otherwise. The 

probability of a yes response from a respondent is now given by 

( ) ( )( )11 1P yes Pλ π π= = + − − .                         (4)  

Solving (4) for π we get  

( )1

1

1 P

P

λ
π

− −
= .                (5) 

In Case of ordinary logit estimation we could have model iπ as  

log
1

iXi

i

e
βπ

π

′ 
= 

− 

.                                                                                                (6) 
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But again 
iπ is unobservable and data are available only on λ and 

1P , we cannot estimate β  from (6). For 

estimating β , using (5) and (6) we can write 

( )1
1i

i

X

i X

e P

e

β

β
λ

′

′

+ −
= .                                                                                                (7) 

Similar to the Hussain and Shabbir (2008), for 1 1P = , it reduces to ordinary logit estimation. 

Consider a random variable iY which takes on the value 1 with probability iλ  and the value 0 with 

probability ( )1 iλ− . Then the likelihood function for β  is given by 

 ( ) ( )
1

1

| 1 ,ii

n
YY

i i

i

L Yβ λ λ
−

=

= −∏                                                                                  (8) 

or  

 ( ) ( ) ( ){ }
1

log | 1 log 1
n

i i i i

i

L Y Y Yβ λ λ
=

= = + − −∑l                                                                                             

The first derivative of this log-likelihood function with respect to β is given by 

( )
( )

1

1 1

1
1

i

i

i

Xn
Xi

iX
i

Y e
e X

e P

β
β

ββ

′
−′

′
=

 ∂
′= + + 

∂ + −  
∑

l
.                                                            (9) 

As discussed by Hussain Shabbir (2008), setting this derivative equal to zero does not give us the closed form 

solution of β . So, we solve this expression numerically and find out the estimates of β  for different values 

of 1P and compare them with the ordinary logit estimates of  β  when 1 0P = . 
 

4 Comparisons 
 

Now we compare the proposed logit estimation with the ordinary logit estimation and Hussain and Shabbir 

(2008) hidden logit estimation at equal level of privacy. 
 

(i) proposed logit estimation versus ordinary logit estimation 
 

To compare the two logit estimates of β  we do a small simulation study because maximum likelihood 

estimators have certain properties such as consistency, normality and efficiency for large samples (King 

1998), and Greene (2000)). As mentioned above for 1 1P = , hidden logit estimates of β  reduce to ordinary 

logit estimates, we compare them for different values of 1P . For this purpose data were generated as follows. 

A three regressors equation with no constant term is assumed. For simplicity we assumed 5000n = , 1jβ =  

and jX follows ( )3,3U −  for 1, 2,3.j =  The results for various values of 1P  are shown in Table 1. To 

examine the behavior of the estimates ˆ '
j

sβ of 'j sβ we have plotted ˆ '
j

sβ  and their standard errors against 

different values of 1P  in Figure 1 and Figure 2 respectively.  From Figure 1 it can be seen that as the value of 

1P  increases the estimates of proposed hidden logit approximately approach to the true parametric values. 

Form Figure 2, it is observed that the standard errors of the estimates decrease as the value of 1P  increases and 

the standard errors are at their minimum when 1 1P = . Thus it is evident that we gain in terms of trustworthy 

data and almost unbiased estimates at the cost of decreased precision. Thus it is trade off between honest data 

and the precision. 
 

(ii) Proposed versus Hussain and Shabbir (2008) at equal privacy level 
 

Leysieffer and Warner (1976) suggested a measure of privacy called jeopardy measure. According to them 

population is divided into two complementary groups A  and 
cA  having proportions π and 

( )1 π− respectively. In case of yes/no responses a response R is either yes or no. Using the conditional 

probabilities of response  R , ( )|P R A and ( )| c
P R A , jeopardy functions are defined as  
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                      Figure 1: Estimates of ( )' 's b sβ  against 1P  for n = 5000 

 
                      Figure 2: Standard errors of estimates for several values of 

1P when n = 5000 

( )
( )
( )c

P R A
g R A

P R A
= .                                                                                          (10) 

    ( )
( )
( )c

P y A
g y A

P y A
=  .                                                                                           (11) 

Also, 

     ( )
( )
( )

c

c
P n A

g n A
P n A

= .                                                                                           (12) 

In order to obtain logit estimates for proposed and Hussain and Shabbir (2008) at equal privacy level, we 

proceed as follows: 

Jeopardy function for Hussain and Shabbir (2008) is given by 

1( ) ( ).
1

W

P
g y A k say

P
= =

−
                                                                                  (13)  

2( ) ( ).
1

c

W

P
g n A k say

P
= =

−
                                                                                 (14) 

The jeopardy functions for 1M  model are 

( )
1 1

1

1
,

1
Mg y A k

P
= =

−
                                                                                        (15) 

and 

( )
1 2.

c

Mg n A k=                                                                                                     (16) 

At equal privacy level (13) must be equal to (15). So after equating these expressions we get: 

( ) ( )
1M Wg y A g y A= ,     
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1

1

1 1

P

P P
=

− −
 ,                                             

            

1

1

2
P

P
=

−
.                                                                                                           (17) 

From (17) we get P  in terms of 1P . Now we do logit estimation with Warner (1965) model for those values of 

P  which we get using relation (17). Now we are in a position to compare proposed and Hussain and Shabbir 

(2008). The values of P are given below. 
 

Table 2: Values of P evaluated using relation (17) 
 

1P  0.1 0.2 0.25 0.3 0.4 0.5 0.75 0.8 1 

1

1

2
P

P
=

−
 0.5263 0.5556 0.5714 0.5882 0.625 0.6667 0.8 0.8333 1 

 

We know from Hussain and Shabbir (2008) that the estimates become close to parametric values when P  

moves from 0.50 to 1.0, and the behavior of standard errors of estimates is symmetric around 0.5P = . The 

results for various values of P  are shown in Table 3. To examine the behavior of the estimates ˆ '
j

sβ of 'j sβ  

we have plotted ˆ 'j sβ  and their standard errors against different values of P  in Figure 3 and Figure 4 

respectively. From Figure 3 it is observed that for P greater than 0.5263 estimates becomes closer to the 

parametric values. The standard errors of estimates decrease as P  moves away from P =0.5714 (see Figure 

4). When 
1P  = 0.10, the estimate 

0b  from proposed model is 0.0282 and its standard error is 0.2348. At equal 

privacy level using the relation (17) we have P=0.5263 .When P=0.5263 the estimate 
0b
 
for Warner (1965) 

model is 0.1790 and standard error of estimate is 0.3358.  
 

It is clear from the above values that at equal privacy level estimates from proposed model are more close to 

the parameter value as compared to the Warner (1965) model. Also, we can examine from above mentioned 

values that the standard errors for proposed model are less than Warner (1965) model. When 1P  = 0.80 the 

estimate ( )1b for proposed model is 1.0056 and its standard error is 0.0556. For 1P  = 0.80, at equal privacy 

level we get P = 0.8333. When P = 0.8333 the estimated value ( )1b  of 1β  for Warner (1965) model is 1.0099 

and its standard is 0.0709. It can be observed from study that estimates obtained from proposed model are 

more close to the parametric values and their standard errors are small as compared to that obtained from 

Warner (1965) model. 
 

5 Hidden logit estimation using EM algorithm 
 

Now we move towards the situation where some responses are lost due to some reason. One solution is to 

discard the cases with missing values and analyze the rest of the cases by standard procedures treating it as 

complete data. Advantage of this approach is simplicity since standard complete data statistical analysis can 
be applied without modifications. Drawback of this approach is the loss of information, that is, we sacrifice 

the information stored in independent variables. To handle this problem here we use Expectation 

Maximization (EM) algorithm. The EM algorithm is a very general iterative  

 
Figure 3: Estimates for several values of P  when n = 5000 
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Figure 4: Standard errors of estimates for several values of P  when n = 5000 

 
algorithm for maximum likelihood (ML) estimation in incomplete-data problems explained by Dempster et al. 

(1977), Little and Rubin (2002), Longford (2005) etc. Little and Rubin (2002) stated that: “The EM algorithm 

formalizes a relatively old ad hoc idea for handling missing data, i.e. (1) replace missing values by estimated 

values, (2) estimate parameters, (3) re-estimate the missing values assuming the new parameter estimates are 

correct, (4) re-estimate parameters, and so forth, iterating until convergence. Such methods are EM 

algorithms for models where the complete-data log-likelihood ( ) ( ), ln ,obs mis obs misl Y Y l Y Yθ θ= ”. Each 

iteration of EM consists of an E step (expectation step) and an M step (maximization step). The steps involved 

in estimating β’s are described as below: 
 

• Step 1: We set some initial estimates of β  say 
0β  . 

• Step 2: Calculate the expected complete data log-likelihood, which we find by conditional 

expectation based on observed data and initial estimates, 
0β  . 

•  Step 3: As we have complete data log-likelihood so now we find the maximum likelihood estimates 

for β   using logit estimation procedure as we have done before. 

• Step 4: Based on these current estimates repeat step 2 and 3 until convergence occurs. 

Step 2 is executed here by simply replacing missing entries by their conditional expectation on X’s and initial 

parameters 
0β   that is given by: 

                                       ( ) ( )0 0, 1 ,
1

i

i

X

j i j i X

e
E Y X P Y X

e

β

β

ϕ
β β

′

′

+
′ ′= = =

+
.                            (18) 

As the factor ϕ  is included to incorporate the effect of RR procedure, due to which it is known as hidden logit 

estimation procedure. Here 11 Pϕ = − . So, expression involves in step 2 for this case becomes: 

                                      ( ) ( ) ( )10 0
1

, 1 ,
1

i

i

X

j i j i X

P e
E Y X P Y X

e

β

β
β β

′

′

− +
′ ′= = =

+
.                       (19) 

It means that we replace each missing observation by (19). Here we put some function of missing data instead 

of missing value. When 1 1P = , the above expression becomes the same as that for ordinary logit.  

To compare the two logit estimates of β  when some observations are missing and EM algorithm is used to 

over come this problem we do a small simulation study. The results of this simulated study for sample size 

5000 for different values of 1P  are shown in Table 3. To examine the behavior of the estimates we have 

plotted estimates and their standard errors against different values of 1P  in Figure 5 and Figure 6 respectively.  

It is examined form Figure 5 that the values of the estimators approach, approximately, to the true value of the 

parameters as 1P  increases, and are more close to parametric values for 1P =1, that is, for ordinary logit. But 

ordinary logit do not provide the required results. As respondent might refuse to respond or gave wrong 

information about his/her true status in sensitive psychological surveys.  
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So we prefer hidden logit to gain true information. In this way we are in better position to draw conclusion 

about any sensitive or stigmatizing characteristic of the respondent.  

 
Figure 5: Estimates of 'sβ  for different values of 

1P  when n = 5000 

 

                                              
Figure 6: Standard errors of estimates for different values of 

1P  when n = 5000 
 

6 Conclusion 
 

We find that the estimates of hidden logit approaches to true parametric values as the design probability 1P  

increases. Also we examine that the standard errors of estimates decreases as 1P  increases, and is least for 

ordinary logit that is 1P  = 1. Also we observe that hidden logit estimates for Mangat (1994) are closer to the 

true parametric values as compare to the Warner (1965). Also they show increase in precision. So hidden logit 
estimation using Mangat (1994) is more appropriate to obtain true estimates of population proportion. If there 

are some missing responses than it is beneficial to use EM algorithm. In this way at least the information 

stored in independent variables can be utilized. Although standard errors of estimator are least for ordinary 
logit as compared to hidden logit even then it is preferable to use hidden logit in studying 

embarrassing/stigmatizing characteristics. Because if we do not provide the respondent sufficient anonymity 

in sensitive psychological surveys he/she will either refuse to give response or not respond truthfully. So we 

prefer to attain more accurate information through RR design. 
 

References 
 

1 Bradely, L. (1988). Making connections in learning to read and to spell. Applied Cognitive 
Psychology. 2(1), 3-18.  

2 Capel, S. A. (1986). Psychological and organizational factors related to burnout in athletic trainers. 

Research Quarterly for Exercise and Sport, 57, 321-328.  

3 Chaudhuri, A. and Mukerjee, R. (1988). Randomized response: Theory and Methods. Marcel- Decker, 

New York. 

4 Christofides, T. C.  (2003). A generalized randomized response technique. Metrika, 57, 195-200. 
 

5 Clark, D.A. and Beck, A.T., 1991. Personality factors in dysphoria: A psychometric refinement of 

Beck's Sociotropy-Autonomy Scale. Journal of Psychopathology and Behavioral Assessment 13, pp. 

369–388. 

s.
e
(b

’s
) 



The Special Issue on Contemporary Issues in Business and Economics               © Centre for Promoting Ideas, USA           

186 

 

6 Clark, D.A. and Beck, A.T., 1991. Personality factors in dysphoria: A psychometric refinement of 
Beck's Sociotropy-Autonomy Scale. Journal of Psychopathology and Behavioral Assessment 13, pp. 

369–388. 

7 Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977). Maximum likelihood from Incomplete data 
via EM algorithm. Journal of Royal Statistical Society, B, 39 (1), 1-38. 

8 Friedrich, W. N., Urquiza, A. J. and Beilke, R. L. (1986). Behavior Problems in Sexually Abused 

Young Children. Journal of Pediatric Psychology, 11(1), 47-57. 

9 Greenberg, B. G., Kuebler, R. R., Jr., Abernathy, J. R. and Horvitz, D. G. (1969). The unrelated 

question randomized response model: theoretical framework.  Journal of the American Statistical 

Association, 64, 520-539. 

10 Hedeker, D., McMahon, S. D., Jason, L. A., & Salina, D. (1994).  Analysis of clustered data in 

community psychology: with an example from a worksite smoking cessation project.  American 

Journal of Community Psychology, 22, 595-615.  

11 Hussain, Z. and Shabbir, J, 2010. Three stage quantitative randomized response model. Journal of 

Probability and Statistical Sciences, 8(2): 223-235. 

12 Hussain, Z. and Shabbir, J. (2008): Logit estimation using Warner’s randomized response model, 

Journal of Modern Applied Statistical Methods, 7 (1), 140-151. 

13 Hussain, Z., Shabbir, J. and Gupta S, 2007. An alternative to Ryu et al. randomized response model. 

Journal of Statistics & Management Systems, 10(4): 511-517. 

14 Kim, J. M.  and  Warde, D. W. (2004). A stratified Warner’s randomized response model. Journal of 

Statistical Planning and Inference, 120 (1-2), 155-165. 

15 Little, R.J.A. and Rubin, D.B. (2002). Statistical Analysis with Missing Data, 2
nd

 edition,  New York, 

John Wiley.  

16 Longford, N. T. (2005). Missing data and small-area estimation : Modern Analytical equipment for 

the survey statistician. New York, Springer.    

17 Mangat, N. S. (1994). An improved randomized response strategy. Journal of Royal Statistical 

Society, B, 56(1)  93-95. 

18 Mangat, N.S. and Singh R. (1990). An alternative randomized response procedure. Biometrika, 77, 

439-442. 

19 Singh, S., Horn, S., Chowdhuri, S. (1998). Estimation of stigmatized characteristics of a hidden gang 

in finite population. Australian and New Zealand Journal of Statistics, 40(3),  291-297. 

20 Tracy, D. and Mangat, N. (1996). Some development in randomized response sampling during the last 
decade-a follow up of review by Chaudhuri and Mukerjee. Journal of Applied Statistical Science, 4,  

533-544. 

21 Waldman I. D., Robinson, B. F. & Rowe, D. C. (1999). A logistic regression based extension of the 

TDT for continuous and categorical traits. Annals of Human Genetics, 63,329-340. 

22 Waldman, I.D. & Rhee, S.H. (2002). Behavioral and molecular genetic studies of ADHD. In 

Sandberg, S. (Ed.) Hyperactivity and Attention Disorders in Childhood (2nd Ed.). New York: 

Cambridge University Press.  

23 Warner, S. L. (1965). Randomized response: a survey technique for eliminating evasive answer bias. 

Journal of the American Statistical Association,  60, 63-69. 
 

APPENDIX 

Derivation of hidden logit for 1M  model 

As 

        ( )1 11p pλ π= + −                                                                                                       (1) 

          
( )1

1

1 p

p

λ
π

− −
=                                                                                                        (2) 

      ln
1

i
X

π
β

π

 
= 

− 
                                                                                                         (3) 

Putting (2) in (3) we get: 
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Derivation of the first derivative  
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Differentiate w.r.to β  
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Put this in (13) and simplifying we get: 
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Table 1: Estimates and their standard errors of ordinary and hidden logit models for various values of 1p   

for  1M  model when n = 5000 

Entries in the table represent estimates of coefficients and respective standard errors in parenthesis. 

 
 

 
 

Table 2: Estimates and their standard errors of ordinary and hidden logit models for Warner’s (1965) 

model at equal privacy level to  1M  model when n = 5000 
 

Entries in the table represent estimates of coefficients and respective standard errors in parenthesis. 
 

 
βi 

ordinary 

logit =0.5263 =0.5556 =0.5714 =0.5882 =0.625 =0.6667 =0.8 =0.8333 

0X  0 -0.0029 

(0.0460) 

 

0.1789 

(0.3357) 

 

-0.1338 

(0.5959) 

 

-0.0304 

(0.5504) 

 

0.0011 

(0.4055) 

 

-0.0035 

(0.2182) 

 

-0.0033 

(0.1526) 

 

-0.0004 

(0.0813) 

 

0.0003 

(0.0730) 

 

1X  1 1.0043 

(0.0404) 

0.8782 

(0.2897) 

1.0535 

(0.5605) 

1.3025 

(0.7486) 

1.2465 

(0.9440) 

1.0539 

(0.2563) 

1.0255 

(0.1628) 

1.0097 

(0.0818) 

1.0099 

(0.0709) 

2X  1 1.0032 

(0.0396) 

0.9078 

(0.2881) 

1.0952 

(0.5612) 

1.3211 

(0.7716) 

1.2412 

(0.8168) 

1.0570 

(0.2487) 

1.0259 

(0.1622) 

1.0115 

(0.0839) 

1.0082 

(0.0715) 

3X  1 1.0036 

(0.0391) 

0.8642 

(0.4870) 

1.1070 

(0.5799) 

1.3258 

(0.8414) 

1.2344 

(0.8705) 

1.0572 

(0.2531) 

1.0240 

(0.1657) 

1.0064 

(0.0799) 

1.0080 

(0.0707) 
 

Table 3: Estimates and their standard errors of ordinary and hidden logit models for 1M  model using EM 

algorithm in case of missing values when n = 5000 
 

Entries in the table represent estimates of coefficients and respective standard errors in parenthesis. 
 

 

 
Ordinary 

logit 1 0.10p =  
1 0.20p =  

1 0.25p =  
1 0.30p =  

1
0.40p =  

1 0.50p =  
1

0.75p =  
1 0.80p =  

0X  0 -0.0181 

(.0316) 

-0.3586 

(0.2553) 

-0.0044 

(0.1268) 

-0.0993 

(0.1753) 

-0.1442 

(0.1153) 

-0.0683 

(0.0919) 

-0.0638 

(0.0764) 

-0.0871 

(0.0499) 

-0.0171 

(0.0471) 

1X  1 0.9543 

(.0314) 

1.3079 

(0.3104) 

0.8967 

(0.1217) 

1.2999 

(0.1851) 

1.0343 

(0.1197) 

1.1517 

(0.1066) 

1.0371 

(0.0810) 

1.0021 

(0.0515) 

1.1116 

(.0521) 

2X  1 0.9545 

(.0316) 

1.1827 

(0.2830) 

0.8343 

(0.1171) 

1.2099 

(0.1729) 

1.0784 

(0.1255) 

1.0504 

(0.0990) 

1.0151 

(0.0792) 

0.9710 

(0.0504) 

1.0334 

(0.0499) 

3X  1 0.9698 

(.0317) 

1.3142 

(0.3075) 

0.8026 

(0.1149) 

1.2822 

(0.1828) 

1.1345 

(0.1303) 

1.1290 

(0.1060) 

1.1184 

(0.0851) 

0.9436 

(0.0492) 

1.0288 

(0.0494) 

 

 

 
 

(ordinary 

logit) 1 0.10p =  
1 0.20p =  

1 0.25p =  
1

0.30p =  
1

0.40p =  
1 0.50p =  

1 0.75p =  
1

0.80p =  

0X  0 0.0002 

(0.0445) 

 

0.0282 

(0.2348) 

 

0.0182 

(0.1499) 

 

0.0103 

(0.1307) 

 

0.0085 

(0.1171) 

 

0.0040 

(0.1021) 

 

0.0011 

(0.0844) 

 

0.0018 

(0.0605) 

 

0.0009 

(0.0563) 

 

1X  1 1.0034 

(0.0419) 

 

1.0746 

(0.2738) 

 

1.0247 

(0.1605) 

 

1.0222 

(0.1420) 

 

1.0191 

(0.1254) 

 

1.0129 

(0.1025) 

 

1.0092 

(0.0833) 

 

1.0061 

(0.0598) 

 

1.0056 

(0.0556) 

 

2X  1 1.0032 

(0.0405) 

 

1.0695 

(0.2786) 

 

1.0240 

(0.1645) 

 

1.0206 

(0.1430) 

 

1.0182 

(0.1278) 

 

1.0130 

(0.1031) 

 

1.0086 

(0.0843) 

 

1.0045 

(0.0586) 

 

1.0039 

(0.0544) 

 

3X  1 1.0022 

(0.0394) 

1.0655 

(0.2572) 

1.0215 

(0.1621) 

1.0209 

(0.1421) 

1.0184 

(0.1238 

 

1.0128 

(0.1018) 

1.0073 

(0.0843) 

 

1.0028 

(0.0573) 

1.0027 

(0.0542) 


