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Abstract 
 
The paper illustrates the importance of Delay Embedding Technique (ܶܧܦ) - a chaotic model applied to the daily 
EUR/RON exchange rate. It assumes that the time series is a projection of a dynamical system that belongs to a 
larger space. Thus, we reconstruct the phase space and choose some random dimension and time delay. The 
results of applying ܶܧܦ instead of selecting random input dimension and time delay indicates that a better 
forecast of EUR/RON exchange rate is obtained and the dynamic of the system is preserved. Artificial Neuro-
Fuzzy Inference Systems (ܵܫܨܰܣ) receives as inputs the delayed vectors resulted from the chaotic model, these 
two mechanisms outline a hybrid model. ܵܫܨܰܣ proved to be the most efficient tool that can handle large data 
sets in order to provide qualitative predictions, so the combination between ܶܧܦ, auto-mutual information 
function and ܵܫܨܰܣ could represent an outstanding prediction tool for complex time series. 
 

Keywords: Artificial Neural Network; Forecasting; Delay Embedding Technique; Artificial Neuro-Fuzzy 
Inference Systems; Chaos Theory; Mutual Information. 
 

1. Literature Review- Brief History of Chaos 
 

James Clerk Maxwell studied the sensitivity to initial conditions of dynamical systems and assumed that this 
could only happen in systems with a large number of variables. On the other hand, Henri Poincaré paid attention 
to the analysis regarding the sensitivity to initial conditions and unpredictability of chaotic systems with a small 
number of variables. In 1963 Lorenz, E. [15] came with the seminal paper on sensitivity to initial conditions, later 
named the “butterfly effect”, but it did not receive much interest until his talk at the American Association for the 
Advancement of Science meeting in 1972. The first application field of the chaos theory was in meteorology 
when Lorenz simulated the atmosphere with a set of 12 differential equations. Later, as the neural networks field 
emerged, they represented a good support to further develop of the chaos theory, also building powerful tools for 
predicting time series. Some of the most representative papers regarding the time series prediction using hybrid 
models (chaotic tools and neural networks) are presented below: 
 

Atmaca, H., Cetişli, B. and Yavuz, H. S. (2001) [3] realized a comparative analysis between ܵܫܨܰܣ	and ܰܰܣ 
using fuel consumption (Mile per Gallon) support data based on which the main conclusions were outlined. 
 Proved to be more efficient in terms of computational complexity problems, but it presents lack of ܵܫܨܰܣ
qualitative prediction when it comes to small amounts of data. Also, regarding the training data, ܵܫܨܰܣ provides 
the result with minimum total error compared toܰܰܣ. On the other hand, when the trained parameters are applied 
to the checking data, the total error of the ܰܰܣ is smaller than the total error of the	ܵܫܨܰܣ. 
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Finnsson, I. (2005) [10] applied ܵܫܨܰܣ to a small sample (952 exchange rate points available), some time delays 
were chosen after trying different combinations, but when it comes to prediction -  in this case ܵܫܨܰܣ encounters 
instability problems. The author claims that the ܪܥܴܣܩ model is recommended in this case, providing very good 
prediction for the return series although it is difficult to map it back into the price series. Zhang, J., Dai, W., Fan, 
M., Chung, H. and Wei, Z. (2005) [26] proved that if we decide to use only Fuzzy Inference System to predict 
chaotic time series, the result will be weak but the prediction accuracy can increase significantly if we preprocess 
the time series data with delay embedding technique. Ma, H. and Han, C. (2006) [16] described a new algorithm 
for calculating the embedding dimension and the time delay of the reconstructed phase space which is based on 
the nonbias multiple autocorrelation and Gamma test, this combination also reduces the effect of noise which 
leads to a better highlight of the strange attractor.  
 

In 2009 Ragulskis, M. and Lukoseviciute, K. (2009) [22] approached a new method of delay embedding by 
finding a set of non-uniform time lags. The set of non-uniform time lags results from maximizing a predefined 
objective function which depends on the magnitude of the attractor’s spreading in the phase space. The 
identification of the optimal time lags also helps finding the embedding dimension of the reconstructed phase 
space. Some experiments using classical chaotic time series (Rossler) were conducted and used ܵܫܨܰܣ for 
prediction purposes. The input for the fuzzy inference system is represented by delayed vectors of non-uniform 
time lags previously optimized. The results of these experiments reveal significantly improved predictions 
compared to uniform delay embedding technique. Ciobanu, D. and Bar M. V. (2013) [7] used the Chaos Theory 
to predict the USD/EUR exchange rate: starting with the calculation of the embedding dimension and time delay, 
then using these values for ݇-Nearest Trajectories Algorithm, he concluded that if we have enough observations in 
order to have a good coverage of the attractor, the chaotic model holds. The Chaos Theory model is presented as a 
local model which is more appropriate for financial time series compared to Neural Networks models which are 
global function approximators that can lead to weaker predictions.  
 

Behmanesh, M., Mohammadi, M. and Naeini, V. S. (2014) [4] proposed an improved version of ܵܫܨܰܣ	used in 
chaotic time series prediction. This version consists of a new learning algorithm which is a combination between 
Least Squares Method (to update the consequent parameters) and Imperialist Competitive Algorithm (to update 
the previous parameters) in the iterative learning process. This new hybrid algorithm doesn’t depend on the 
derivative of the error’s surface while adapting the synaptic strengths, concluding that the network will not be 
trapped in local optima while trying to update the previous parameters. Several time series derived from classical 
Dynamical Systems are investigated: Mackey-Glass time series, Lorenz model and Rossler model and the results 
reveal an outstanding performance of the new hybrid algorithm. In 2015 Allen, D. E., McAleer, M., Peiris, S. and 
Singh, A. [2] modeled the return series for four parities including US Dollar.  
 

They used 5 types of nonlinear regression models (Logistic Smooth Transition Model, Threshold Autoregressive 
Model, Additive Nonlinear Model, Smooth Transition Model and Nonlinear Autoregressive Model) and two types 
of Neural Networks: with linear and nonlinear activation function (depending on the case). The Neural Network 
with nonlinear activation function has proven to be the most suitable model for prediction exchange rate in terms 
of errors. Pedram, M. and Ebrahimi, M. (2015) [21] investigated the prediction of exchange rate data using 
artificial neural networks and concluded that the ܰܰܣ performance indicates the advantage of estimating complex 
models even if we use a small set of data as an input, but we should take into account that data limitation often 
leads to a hard reach of a global minimum error, recommending Genetic Algorithms in order to fix this problem. 
The author also analyzed the sensitivity of the ܰܰܣ to the input variables concluding that the Iran Consumer 
Price Index has the biggest impact in the trend of USD/IRR exchange rate. 
 

2. Preliminaries 
 

2.1. Takens Theorem 
 

The deterministic part of a dynamical system relies on the concept of phase space, the set of all possible states of 
the system which is mathematically described by using the equations of motion or a collection of coordinates that 
give a complete description of the system. For chaotic dynamical systems, which are more common in nature, the 
easiest way to reconstruct the phase space is through attractors.  
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An attractor represents ‘a set of states (points in the phase space), invariant under the dynamics, towards which 
neighboring states in a given basin of attraction asymptotically approach in the course of dynamic evolution’1. 
Usually, attractors are simple fixed points, but they can also take different geometrical shapes, moreover if they 
cannot be easily described as intersection of fundamental geometrical manifolds, then the attractors are called 
strange attractors.  
 

In reality, a dynamical system issues multiple signals at different moments in time, generating a time series. Thus, 
the challenge is to reconstruct the phase space using the time series as a proxy.  
 

Suppose we have a dynamical system represented by the states (ݐ)ݔ ∈ ℝே that evolves through the following 
differential equatioṅݔ = where ߰:ℝே ,(ݔ)߰ → ℝே represents the vector field of the dynamical system.  

Let ℳ be a submanifold of ℝே. If we want to describe the system states,	(ݐ)ݔ,	 at any given point in time, ݐ, we 
define the following flow function: 
 

ग:ࡳ × ℝ →ग,ࡳ(࢞(࢚૙),ࢀ) = ૙࢚)࢞ +  (2.1.1 ) (ࢀ
 

For the moment, we are interested in dynamical systems that are uniformly sampled in time (sampling time is 
denoted by	 ௦ܶ) and define the time ܶ-map of the manifold ℳ by: 
 

ࡹ:ࢀࡳ → ൯(૙࢚)࢞൫ࢀࡳ,ࡹ = ૙࢚)࢞ +  (2.1.2 ) (ࢀ

and 

ࢀࡳ ∘… ∘ ൯(૙࢚)࢞൫ࢀࡳ =  ൯ ( 2.1.3)(૙࢚)࢞൫࢑ࢀࡳ

 

Due to the technological limitations we only get to see one-dimensional time series (ݐ)ݕ = ߶൫(ݐ)ݔ൯, where ߶ is a 
measurement function. The main question is: Can information about (ݐ)ݔ be retained in this time series data? 
Takens confirmed this theory through the following immersion: 
 
 

൯(࢚)࢞൫ࡲ = ൯࢙ࢀషࡳ,൫ࣘࡲ
൫(࢚)࢞൯ = ൣࣘ൫(࢚)࢞൯,ࣘ ∘ ,൯(࢚)࢞൫࢙ࢀିࡳ … ,ࣘ ∘ ࢙ࢀିࡳ

൯൧(࢚)࢞૚൫ିࡹ

= ࢚)࢟,(࢚)࢟	ൣ − ,(࢙ࢀ … ࢚)࢟, −  [൯(࢙ࢀ(૚−ࡹ)
( 2.1.4) 

 
 

Where ܨ is a mapping from the manifold ℳ	 ⊂ ℝே to a reconstructed space ℝெ formed with time series 
measurements.  
 

The idea of using time delay coordinates in order to represent a system state comes from the theory of ordinary 
differential equations where existence theorem says that there is a unique solution for	݃((ݐ)ݕ,ݐ, ,(ݐ)ݕ̇ … ) = 0, 
given all the initial conditions (current knowledge of the position and momentum suffices to uniquely determine 
the future dynamics). The same approach could be applied for delay embedding technique, approximating the 
derivatives by delay-coordinate terms as follows: 
 

൯(࢚)࢞൫ࡲ = ቈ	(࢚)࢟,
(࢚)࢟ − ࢚)࢟ − (࢙ࢀ

࢙ࢀ
,
(࢚)࢟ − ૛࢚)࢟ − (࢙ࢀ + ࢚)࢟ − ૛࢙ࢀ)

૛࢙ࢀ
	 , … ቉ ( 2.1.5) 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
                                                   
1http://mathworld.wolfram.com/Attractor.html 
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Figure 1: Takens theorem illustration 
 

 
 

Source: https://cnx.org/contents/k57_M8Tw@2/Takens-Embedding-Theorem 
 

2.2. Phase space reconstruction of a dynamical system 
 

Considering Takens theorem, we can assume that a chaotic time series is actually a projection of the realizations 
of a dynamic system in a larger space. For the reconstruction of the phase space, we must determine the time 
delay ( ௦ܶ) and the embedding dimension (ܯ), meaning that from the initial time series {(2)ݕ,(1)ݕ, …  we {(ܰ)ݕ,
have to extract the following vectors (that belong to the phase space): 
 

(࢚)ࡹ࢟ = ࢚)࢟,(࢚)࢟	ൣ − ,(࢙ࢀ … ࢚)࢟, − −ࡹ) ૚)࢙ࢀ)൯	, ࢚ = ࢙ࢀ(૚−ࡹ) + ૚, …  (2.2.1) ࡺ,

 

It is important to select a suitable pair ( ௦ܶ  when performing the delay embedding, since the embedding (ܯ,
dimension and time delay are directly related to the characteristics of the strange attractors included in the phase 
space.  

According to [16] there are two methods of choosing the pair (	 ௦ܶ   :(ܯ,
 

1) The first one assumes that 	 ௦ܶ and ܯ are not correlated which means that they have to be selected 
independently. Takens proved that this method is ideal if the chaotic time series is infinite and has no 
noise which, in this case, we can estimate the embedding dimension using False Nearest Neighbors 
algorithm and the time delay using autocorrelation function, mutual information function, wavering 
product, average displacement (ܦܣ algorithm), etc. 

 

2) The second method assumes that ௦ܶ and ܯ are closely related due to the fact that real time series are not 
infinitely long and we can’t avoid the noise. The dependence between the two variables is given by the 
time span, as follows: 

 

࢚࢝ =  (2.2.2) ࢙ࢀ	(૚−ࡹ)

Note that experiments on chaotic time series proved that ݐ௪ is almost constant but an irrelevant relation 
between	 ௦ܶ and ܯ will degenerate the equivalence between the original dynamic system and the reconstructed 
phase space. The second method is more practical than the first one due to the noise and data limitation. An 
idealistic approach (as the 1st method) could be applied if we have a consistent historical data, and eventually 
reduce the noise by applying spectral decomposition.  
 

Theoretically, an embedding of the original space can be obtained if we take a sufficiently large ܯ and any value 
of	 ௦ܶ. In reality, if ܯ is too large - the noise can reduce the visibility of the attractor and it will harden the 
computational efficiency, but on the other hand if ܯ is too small - the attractor will be folded. The choice of	 ௦ܶ is 
also important in order to establish data correlation in the delayed vectors.  
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If ௦ܶ is too large the elements of the delayed vectors will behave like uniformly random data (this is not the 
purpose of the embedding) and no information can be gained from the plot, on the other hand if ௦ܶ is too small, 
when plotted, all of the data stays near the line	(ݐ)ݕ = ݐ)ݕ + 	 ௦ܶ). Therefore, optimal values of	 ௦ܶ and ܯ have to 
be calculated in order to mimic the behavior of the original dynamic system.  
 

In this paper, optimal values of	 ௦ܶ and ܯ are selected using Average Mutual Information function and the False 
Nearest Neighbors, respectively (see Figure 2). 
 

Figure 2: Prediction scheme in a chaotic system 
 

 
 

Source: Authors’ calculations.  
 

3. Data And Methodology 
 

3.1. EUR/RON exchange rate data 
 

The paper aims to investigate the prediction efficiency and dynamics preserving of Chaotic Models in 
combination with ܵܫܨܰܣ	using the EUR/RON exchange rate, daily quotations for the time period from January 
03, 2011 to February 26, 2016, which involves investigating a time series of 1305 observations. The data were 
collected from the official website of the National Bank of Romania2. 
 

3.2. Selection of the embedding dimension 
 

One of the most important features of the attractors is the neighbors acquired on their orbits. These neighbors 
provide information about how phase space neighborhoods evolve, in order to use them in the prediction of new 
points near or on the attractor. In an embedding dimension that is too small to unfold the attractor, not all the 
points that seem to be close to one another are actually neighbors due to the dynamics. If we are in ܯ dimensions 
and ݕெ

(௥)(ݐ) is the rth nearest neighbor of ݕெ(ݐ), then the square Euclidian distance between ݕெ௥  is (ݐ)ெݕ and (ݐ)
given by the following equation:  
 

૛ࡹࡾ ,࢚) (࢘ = ෍ൣ	࢚)࢟+ −(࢙ࢀ	࢑ +࢚)(࢘)࢟ ൧(࢙ࢀ	࢑
૛

૚ିࡹ

ୀ૙࢑

 
 

(3.2.1) 

                                                   
2http://bnr.ro/Cursul-de-schimb-524.aspx 
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Adding an extra dimension to the reconstructed phase space is equivalent to adding a new coordinate to each 
vector of  ݕெ(ݐ)  which is ݐ)ݕ + 	ܯ ௦ܶ), therefore the new square Euclidian distance becomes: 
 

ା૚૛ࡹࡾ ,࢚) (࢘ = ૛ࡹࡾ ,࢚) (࢘ + ࢚)࢟ൣ + (࢙ࢀ	ࡹ − +࢚)(࢘)࢟ ൧(࢙ࢀ	ࡹ
૛
 (3.2.2) 

 

Using this measure, we start to designate as a false neighbor any neighbor for which the following inequation 
holds:  
 

ା૚૛ࡹࡾ ,࢚) (࢘ − ૛ࡹࡾ ,࢚) (࢘
૛ࡹࡾ ,࢚) (࢘

=
ห࢚)࢟ + (࢙ࢀ	ࡹ − +࢚)(࢘)࢟ ห(࢙ࢀ	ࡹ

૛ࡹࡾ ,࢚) (࢘
>  ࢒࢕࢚ࡾ

 

(3.2.3) 

 

Where ܴ௧௢௟  is some predefined threshold.  
 

Kennel, M., et al. [13] proved that for ܴ௧௢௟ ≥ 10 the false neighbors are clearly identified, but also that ܴ௧௢௟ ≥ 10  
is not a sufficient condition for determining the embedded dimension.Analyzing a white noise signal, if we are 
adding new data points to the signal, the embedding dimension (that dimension where the number of false nearest 
neighbors drops to zero) systematically increases, diverging to infinity for very large noise time series.The 
conclusion is that we need an extra measure (we can assimilate it to a convergence criterion) in the algorithm of 
false nearest neighbors: 
 

,࢚)ା૚ࡹࡾ (࢘
࡭ࡾ

>  ࢒࢕࢚࡭
 

(3.2.4) 
 

whereܴ஺ is chosen to be ටଵ
ெ
∑ (݇)ݕ) − ത)ெݕ
௞ୀଵ

ଶ.  

 

Using experimental data, Kennel, M., et al. [13] stated that ܣ௧௢௟ = 2 is a good convergence criterion. Thus, it is 
recommended to select the embedding dimension that sets to zero the number of false nearest neighbors.  

As can be seen from Figure 3, for our EUR/RON exchange rate data the number of false nearest neighbors drops 
to 0 when ܯ = 6. 
 

Figure 3: Number of false nearest neighbors depending on the embedding dimension 
 

 
 

Source: Authors’ calculations. 

3.3. Selection of the time delay 
 

The main difference between the mutual information function and the correlation function is that the first one 
measures the mutual dependence between two variables i.e. the amount of information about one random variable 
through another random variable, while the second function measures the linear dependence. Another important 
difference between these two functions is given by the applicability of mutual information also to symbolic 
sequences, while the correlation function is specific only for numerical sequences. Formally, the mutual 
information function can be defined as follows: 
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(ࢅ,ࢄ)ࡵ = ෍෍࢏)ࢅࢄࡼ, (࢐ ૛܏ܗܔ
,࢏)ࢅࢄࡼ (࢐
(࢐)ࢅࡼ(࢏)ࢄࡼ

࢟ࡺ

ୀ૚࢐

࢞ࡺ

ୀ૚࢏

 
 

(3.3.1) 

Where: 
 

ܺ, ܻ – discrete random variables; 

௑ܲ – The probability mass function of ܺ;  

௒ܲ – The probability mass function of ܻ;  

௑ܲ௒ – The probability mass function of the joint distribution;  

௫ܰ – The number of elements that are chosen for the histogram of ܺ;  

௬ܰ– The number of elements that are chosen for the histogram of ܻ. 

 

If we refer to the two variables as delayed version of one from the other, we can view the mutual information as 
auto-mutual information function (specifically for stochastic processes) which is a function depending on the time 
delay (ܶ) and it is given by the following equation: 
 

(ࢀି࢚ࢅ,࢚ࢅ)ࡵ = (ࢀ)ࡵ = ෍ ෍ ࢏ࢅ)ࡼ = ࢐ࢅ,	(࢏)࢟ = ૛܏ܗܔ	((࢐)࢟
࢏ࢅ)ࡼ = ࢐ࢅ,	(࢏)࢟ = ((࢐)࢟

࢏ࢅ)ࡼ = ࢐ࢅ)ࡼ((࢏)࢟ = 		((࢐)࢟

ࡺ

ା૚ࢀୀ࢐

ࢀିࡺ

ୀ૚࢏

 (3.3.2) 

 

The method of mutual information function for finding the best delay (	 ௦ܶ) was proposed by Fraser, A. M. and 
Swinney, H. L. [11]. According to this paper, the mutual information is the answer to the following question: 
Given a measurement of (ݐ)ݕ, how many bits (of information) on the average can be predicted about ݐ)ݕ + ܶ)? 
Idealistic will be to have ܫ(ܶ) as small as possible. Actually, ܫ(ܶ) starts from a very high value; given a 
measurement of (ݐ)ݕ we know as many bits as possible about (ݐ + 0) =  decreases, then (ܶ)ܫ ,As ܶ grows .(ݐ)ݕ
usually rises again. The authors also suggested using the first local minimum of ܫ(ܶ) in order to select	 ௦ܶ .  
 

As it is, the numerical approximation of the joint probability distribution ܲ( ௜ܻ = ,	(݅)ݕ ௝ܻ =  is the most ((݆)ݕ
demanding element of the computation. Fraser, A. M. and Swinney, H. L [11] also proposed an algorithm for 
estimating this function by constructing a locally adaptive partition of the ܻܺ plane. Therefore, a Matlab routine 
was created in order to calculate the auto-mutual information function.  
 

For our data series the first local minimum is reached at  ܶ = 	 ௦ܶ = 32 (see Figure 4) which is not very 
pronounced, but it indicates a monthly seasonality of the exchange rate. 
 

Figure 4: Auto-mutual information function and its first local minimum 
 

 
 

Source: Authors’ calculations. 
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3.4. Forecast EUR/RON exchange rate using ANFIS 
 

 combines two approaches: fuzzy systems and neural networks (a hybrid platform which offers theܵܫܨܰܣ
combinationof learning and nonlinear-adaptability from neural networks plus the approximate reasoning provided 
by the fuzzy set theory). 
 

It is a five layer network (see Figure 5) that allows dealing with complex issues of uncertainty, improving also the 
robustness of the control systems. An input signal in the network has the following path: 

Step 1. The first layer of the network performs the fuzzification process; 
 

Step 2. The second layer executes the fuzzy ܦܰܣ operator of the antecedent part: 
 

࢏࢝ = (࢞)࢏࡭ࣆ × ,(࢟)࢏࡮ࣆ ࢏ = ૚,૛ (3.4.1) 

 

Step 3. The third layer normalizes the membership functions: 
 

ഥ࢝ ࢏ =
࢏࢝

૚࢝ + ૛࢝
, ࢏ = ૚,૛ (3.4.2) 

 

Step 4. The fourth layer evaluates the conclusion part of the fuzzy rules. It uses Sugeno fuzzy rules, ‘if ݔ is ܣ and 
ݖ then ܤ is ݕ =  :which is equivalent to ,’(ݕ,ݔ)݂
 

࢏ࢌ = (࢟,࢞)࢏ࢌ = ࢞࢏ࢇ + ࢟࢏࢈ + ,࢏ࢉ ࢏ = ૚,૛ (3.4.3) 

whereܽ, ܾ and ܿare consequent parameters. 
 

Step 5. The fifth layer sums up the outputs from the layer four and gives the final output of the fuzzy system: 
 

ࢌ = ૚ࢌഥ૚࢝ +  ૛ (3.4.4)ࢌഥ૛࢝
 

The membership function is (ߪ,݉)݊ܽ݅ݏݏݑܽܩ and has the following form: 
 
 

(࢞)࢏࡭ࣆ = ିࢋ
૛(࢏࢓ି࢞)
૛࢏࣌  

 
(3.4.5) 

where: 

݉ – the center; 

 .the width. This parameters are commonly called the premise parameters – ߪ
 

Figure 5: The Artificial Neuro-Fuzzy Inference SystemsArchitecture 
 

 
 

Source: http://www.intechopen.com/books/artificial-neural-networks-architectures-and-applications 
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Using Takens theorem and auto-mutual average information function, the input vectors of the network are 6-
dimensional vectors with 32 delays between components: 
 

൫࢚)࢟,(࢚)࢟ − ૜૛),࢚)࢟ − ૟૝),࢚)࢟ − ૢ૟),࢚)࢟ − ૚૛ૡ),࢚)࢟ − ૚૟૙)൯ (3.4.4) 

whereݐ = 161, … , 1273. 

Next, the first 1080 vectors are used as training data and the last 33 as checking data (for validation purposes). 
The results show a very good fit of the training data and the dynamic of the series is preserved for the validation 
data.  
 

Figure 6: The ࡿࡵࡲࡺ࡭	Output for EUR/RON Exchange Rate 
 

   

Source: Authors’ calculations. 
 

Afterwards, another three simulations (see Table 1) of the EUR/RON exchange rate have been conducted, using 
the following parameters that were chosen on empirical basis: 
 

1) 	 ௦ܶ = 10 and ܯ = 4 

2) 	 ௦ܶ = 5 and ܯ = 5 

3) 	 ௦ܶ = 20 and ܯ = 3 
 

Table 1: RMSE for simulations with random pairs of (	ࡹ,࢙ࢀ) 
 

  All Training data Check data 
Ideal  
࢙ࢀ	) = ૜૛,ࡹ = ૟) 0,023221 0,017803 0,087132 

(	 ௦ܶ = ܯ,10 = 4) 0,027641 0,027568 0,030233 
(	 ௦ܶ = ܯ,5 = 5) 0,020369 0,020467 0,016211 

(	 ௦ܶ = ܯ,20 = 3) 0,037489 0,037533 0,035833 
 

Source: Authors’ calculations. 
 

We denoted by ‘ideal’ the base case where 	 ௦ܶ is calculated with AMIF and ܯ is calculated using delay 
embedding. Withal, we used Root-Mean-Square-Error (ܴܧܵܯ) as a comparison measure between simulations. 
The results reveal the lowest ܴܧܵܯ for training data in the ‘ideal’ case (ܴܧܵܯ = 0.017803) which is the most 
comprehensive data set.  
 

On the other hand, we have the highest RMSE for the check data (ܴܧܵܯ = 0.087132), but is not that significant 
since we have only 33 validation vectors in this set. Extending the validation set, it is recommended to use the 
network with the parameters that are most fitted to the training data in order to get qualitative prediction.  
 

4. Concluding Remarks 
 

For that matter, it is quite difficult to ‘guesses a right pair ( ௦ܶ  for a certain time series since we have to deal (ܯ,
with chaos. Besides this, we also have to deal with noise which is structurless and unpredictable.  

training data check data
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In practice, in most of the cases there are used random pairs ( ௦ܶ  in order to build input vectors for different (ܯ,
neural networks that will predict complex time series, or chose a certain pair that will minimize the error of a 
certain sample of the time series.  
 

The method presented in this paper ensures that computing	 ௦ܶ with AMIF and ܯ using delay embedding, we will 
also comprise features of the underlying dynamical system that generates the time series. This property is useful 
in case we want to predict a larger time frame. The analysis performed in this paper reveals that we can have 
lower prediction errors even if we choose ( ௦ܶ  :randomly, but there are two main disadvantages such as (ܯ,
 

1). The prediction quality depends on the sample, an increase of the time horizon for prediction or the number of 
observations will lead to larger prediction errors. 

2). The dynamics of the series is not preserved, even if we obtain minimum prediction error of the validation set, 
we lose the trend of the series, this effect is also specific when we are using least squares method.  
 

As can be seen in most of the research papers, prediction using chaos needs large amounts of observations, the 
underlying dynamical system that generates an exchange rate time series is usually high dimensional and a 
consistent training set in this case is mandatory, also ANFIS proved to be the most efficient tool that can handle 
large data sets in order to provide qualitative predictions so the combination between delay embedding technique, 
auto-mutual information function and ANFIS could represent an outstanding prediction tool for complex time 
series. 
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