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Abstract 
 

In this article, we propose compromise allocations for multivariate stratified random sampling using the auxiliary 
attributes under non-response.  We modified extended lexicographic goal programming technique and compared 
it with fuzzy goal programming and value function technique. We addressed the problem of compromise 
allocation when the auxiliary information is in the form of an auxiliary attributes. A comparative study is carried 
out to find the best compromise allocation by the numerical example. 
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1. Introduction 
 

A well established sampling plan plays a significant role to make the results useful, obtained from statistical 
studies and provides close approximation to the population estimates. A suitably selected sampling plan and 
samples, representing population, produce more reliable estimates. Stratified random sampling is the most 
representative of population when the data is heterogeneous.  
 

The important consideration in stratified random sampling is the sample size allocation in each stratum with the 
criteria either to minimize variance of stratified sample mean for a fixed cost or to minimize cost for the specified 
variance.  
 

Sampling efficiency depends largely on how the sample size is allocated.  Holmberg (2002) addressed the 
problem of compromise allocation in multivariate stratified sampling by taking into consideration the 
minimization of sum of variances or coefficients of variation of population parameters and minimization of sum 
of efficiency loss which may result due to increase in variance because of using the compromise allocation. 
 

It is more logical to consider the minimization of coefficient of variation (CV) instead of sampling variance as an 
objective because coefficient of variation is a dimensionless number. For practical implementation, constraint for 
integer values of the sample sizes are implemented because rounding off the non integer sample sizes to their 
nearest integer values may produce infeasible solutions. 
 

Non-response is the phenomenon in which required information is not obtained from persons selected in the 
sample. When information on the auxiliary variable is known in the presence of non response, the problem of 
estimation of population mean തܻof the study variable Y has been discussed by Cochran (1977), Rao (1986), Khare 
and Srivastava (1997), Singh and Kumar (2008) and Khan et al.(2010). Methods for solving the problem of 
optimum allocation in multivariate stratified sampling under non response are discussed by Varshney et al.  
(2011), Varshney et al.  (2012), Gupta et al.(2012), Haseen et al.  (2012) and Raghav et al.  (2012)  
 

It is well known that use of the auxiliary information increases the precision of estimators by taking the 
advantages of correlation between the study variable and the auxiliary variable. Ratio, product and regression 
estimators are good examples in this context. In many situations, the auxiliary information is available in the form 
of qualitative information.  
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For illustration, consider the following examples: When the study variable (Y) is the student’s grade point 
average, Ψ1 can be defined as the number of hours spent on studying (low vs high) and Ψ2 can be defined as the 
use of library facilities (yes or no). The study variable (Y) can be the product of wheat crop in a certain region, the 
auxiliary attribute Ψ1 can be the irrigation status (irrigated vs. non-irrigated) and Ψ2 can be the status of land 
ownership (rich vs. poor).  
 

When information on the auxiliary attributes is known in the presence of non response, the problem of estimation 
of population mean തܻof the study variable Y has been discussed by Saghir and Shabbir (2012). To best of our 
knowledge the problem of compromise allocation in multivariate stratified sampling using the auxiliary attributes 
is not found in literature so the proposed study aims to discuss methods for compromise allocation under non-
response using the auxiliary attributes by use of existing criterions. Two cases of non-response are considered. By 
using various multi-objective optimization techniques we find out the best which gives minimized coefficients of 
variation (CVs) for both cases of non-response in presence of the auxiliary attributes. The application of these 
mathematical models on our proposed study is illustrated by numerical example using GAMS. 
 

The paper is organized as: First sampling strategy, required for selection of sample and sub-sample under non 
response in presence of the auxiliary attributes is described and then mathematical form of the multi-objective 
problem under certain constraints is presented. A modified extended lexicographic technique is described along 
with other optimization methods used. Finally, it is shown by the numerical illustration which optimization 
method is best and results are discussed.  
 

2. Sampling Strategies 
 

Consider a population of size N divided into L strata such that ∑ ௛ܰ ୀ
௅
௛ୀଵ  N. We draw a sample of size ݊௛   from 

each stratum by SRSWOR such that ∑ ݊௛ ୀ
௅
௛ୀଵ  n. Let  തܻ௛ , ܵ௛and ௛ܹ  = ௛ܰ  /ܰ be the population mean, 

population variance and known stratum weight of the ℎ௧௛ stratum respectively. It is convenient to think of stratum 
as a single group divided intotwo disjoint groups, one group containing the responding units and the other 
containing the non-responding units.  The number of responding units, number of non-responding units, size of 
sample in responding units, the size of sample in non-responding units in the ℎ௧௛  stratum is denoted by ௛ܰଵ, 
௛ܰଶ = ܰ– ௛ܰଵ, ݊௛ଵ , ݊௛ଶ   =  ݊– ݊௛ଵrespectively. Let ݎ௛ =  ݊௛ଶ /݇௛   is a sub sample taken  

from ݊௛ଶ  units in the ℎ௧௛stratum where ݇௛> 1 and 1/݇௛   denotes sampling fraction among nonrespondents 
assuming that all units in the subsample will respond.  Let ݕ௝௛௜  and ௝߰௛௜  be the ݅௧௛value of the study variable (Y) 
and the auxiliary attribute (Ψ) respectively having the ݆௧௛  characteristic in the ℎ௧௛  stratum.  Let ߖ௝௛௜  is an 
artificial dichotomous attributewhich is useful for simplifying the analysis and presentation of data in many 
situations.  An artificial dichotomy in values of quantitative variable is created out by assigning a designated limit 
due to which two classes will be formed, one possessing the values greater than that cutt off and the other 
possessing valuesless than that cut off. It can be defined as: 
 

                                   1, if ithunit possess attributeΨ௝ , for (݆ = 1,2, …  in the ℎ௧௛ stratum (݌,
           Ψ௝௛௜=  
 
                                  0, otherwise 
 

Similarly we can de ineߖ௝௛௜ . Let the population and sample proportion of units of auxiliary attributesΨ୨  are 
defined as: 
 

Ψഥ௝௛ =   ෍
Ψjhi 

௛ܰ

ே೓

௜ୀଵ

and  ߖഥ௝௛ =  ෍
Ψjhi 
݊௛

௡೓

௜ୀଵ

 
 

For(݆  =  1, 2, . . . respectively.  Let the variance and covariance of the study variable ௝ܻ (݌,  and the auxiliary 
attribute Ψ୨  in the ℎ௧௛  stratum for the ݆௧௛  (j = 1, 2, ..., p) characteristic is defined as 
 

ܵ௬௝௛ଶ       = ෍
൫ݕ௝௛௜ − തܻ௝௛൯

ଶ

௛ܰ − 1

௅

௛ୀଵ

,  where തܻ௝௛ = ෍
௝௛௜ݕ
௛ܰ

ே೓

௜ୀଵ
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ܵఅೕ೓
ଶ       = ෍

൫Ψ௝௛௜ −Ψഥ ୨୦൯
ଶ

௛ܰ − 1

௅

௛ୀଵ

,  and ܵ(௬అ)jh =  ෍
൫ݕ௝௛௜ − തܻ௝௛൯൫Ψ௝௛௜ −Ψഥ ୨୦൯

N୦ − 1

୒౞

୧ୀଵ

 
 

Similarly we can define the variants and covariates under non-response as: 
 

ܵ௬௝௛ଶଶ       = ෍
൫ݕ௝௛௜ − തܻ௝௛ଶ൯

ଶ

௛ܰ − 1

௅

௛ୀଵ

,  where തܻ௝௛ଶ = ෍
௝௛௜ݕ
௛ܰଶ

ே೓మ

௜ୀଵ

 

 

ܵ(௬అ)jh2 =  ෍
൫ݕ௝௛௜ − തܻ௝௛ଶ൯൫Ψ௝௛௜ − Ψഥ ୨୦ଶ൯

N୦ − 1

୒౞

୧ୀଵ

 
 

In our study we have considered two situations of non-response. 
 

Case 1  
 

When non-response is in the study variable ௝ܻ  . Using Hansen and Hurwitz (1946) methodology, the unbiased 
estimator of തܻ௝௛in the ℎ௧௛stratum mean for the ݆௧௛ characteristic is given by: 

തఫ௛ሖݕ =  
݊௛ଵݕത௝௛ଵ +  ݊௛ଶݕത௝௛ଶ

݊௛
                                             (1) 

 

Whereݕ௝௛ଵ is the sample mean based on ݊௛ଵ  respondent units and ݕ௝௛ଶ  is the sample mean based on ݎ௛ sub 
sample units from non respondents.  
 

Case 2  
 

When non-response is in auxiliary attributes and study variables then we define the unbiasedestimator of Ψഥ௝௛for 
the ݆௧௛  characteristic in the ℎ௧௛ stratum mean as: 
 

ഥఫ௛ሖߖ =  
݊௛ଵߖഥ௝௛ଵ + ݊௛ଶߖഥ௝௛ଶ

݊௛
                             (2) 

 

whereߖഥ௝௛ଵ  is the sample mean based on ݊௛ଵ  respondent units and ߖഥ௝௛ଶ  is the sample mean based on ݎ௛  
subsample units from nonrespondents.  
 

We propose optimum allocation using the auxiliary attributes in presence of non response with objective to 
minimize coefficients of variation under simple cost constraint.  Usually the total cost of a sample survey is 
represented by the function of sample allocations ݊௛  , ℎ =  1, 2, . . . ,  The simple cost function is suitable when  .ܮ
the major part of cost is that of taking the measurements on each unit. It can be represented as:  
 

ܥ = ෍ܿ௛଴݊௛ +
௅

௛ୀଵ

෍ܿ௛ଵ݊௛ଵ +
௅

௛ୀଵ

෍ܿ௛ଶݎ௛

௅

௛ୀଵ

 
 

where C is the total cost of the survey, ܿ௛଴  denotes the cost in selection of per unit in the ℎ௧௛  stratum, ܿ௛ଵ =
∑ ௝ܿ௛ଵ 
௣
௝ୀଵ is the cost per unit in taking account of responding units ݊௛ଵ  andܿ௛ଶ = ∑ ௝ܿ௛ଶ

௣
௝ୀଵ   is the cost per unit in 

taking account of subsamplesݎ௛  from non responding units ݊௛ଶ  in the ℎ௧௛  stratum.  Here, ௝ܿ௛ଵܽ݊݀ ௝ܿ௛ଶ  are the 
costs per unit for obtaining the ݆௧௛ characteristics in first and second attempts respectively in the 
ℎ௧௛stratum.As݊௛ଵܽ݊݀݊௛ଶ  are unknown before the first and second attempt is made therefore their expected 
values are used as ௛ܹଵ݊௛ܽ݊݀ ௛ܹଶ݊௛  respectively. The total expected cost ܥመ  of the survey may be given as:  
 

መܥ =  ෍(ܿ௛଴ + ܿ௛ଵ ௛ܹଵ)݊௛ +
௅

௛ୀଵ

෍ܿ௛ଶݎ௛

௅

௛ୀଵ

(3) 
 

Now we discuss the estimator used in our study.  
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When nonresponse is in the study variable ௝ܻ  , the separate regression estimator for multivariate stratified 
sampling is  
 

ത௟௥௦ݕ =  ෍ ௛ܹݕത݈ݎ௝௛

௅

௛ୀଵ

,  
 

Where  ݕത݈ݎ௝௛ = തఫ௛ሖݕ + ௝ܾ௛൫Ψഥ ୨୦ −  ഥ௝௛൯ߖ
 

Here ௝ܾ௛  is the sample regression coefficient.  
 

The Squared CVofݕ௟௥௦  for ݆௧௛  characteristic is: 
 

ܥ ௝ܸ
ଶ =  ෍ ௛ܹ

ଶ

݊௛ തܻ௝ଶ

௅

௛ୀଵ

൫ܵ௬௝௛ଶ + ௝௛ଶܤ ܵΨ୨୦
ଶ − 2B୨୦S(୷Ψ)୨୦൯ + ෍ ௛ܹ

ଶ

തܻ௝ଶ

௅

௛ୀଵ

൬ ௛ܹଶ

௛ݎ
−

1
݊௛
൰W୦ଶS୷୨୦ଶ

ଶ               (4) 
 

where ߚ௝௛ =  S(୷Ψ)୨୦ ܵΨ୨୦ 
ଶ⁄ is the population regression coefficient.  

 

When nonresponse is in both the study variable ௝ܻ   and the auxiliary attribute Ψ୨ , the separate regression 
estimator is given by  
 

ത௟௥௦ሖݕ =  ෍ ௛ܹݕത݈ݎఫ௛ሖ
௅

௛ୀଵ

,  
 

Where                                                 ݕത݈ݎఫ௛ሖ = ത௝௛ݕ + ௝ܾ௛ቀΨഥ ୨୦ ഥఫ௛ሖߖ− ቁ 
 
The squared CV ofݕത௟௥௦ሖ   for݆௧௛ characteristic is 
 

ܥ ఫܸ
ଶ = ሖ ෍ ௛ܹ

ଶ

݊௛ തܻ௝ଶ

௅

௛ୀଵ

൫ܵ௬௝௛ଶ + ௝௛ଶܤ ܵΨ୨୦
ଶ − 2B୨୦S(୷Ψ)୨୦൯

+ ෍ ௛ܹ
ଶ

തܻ௝ଶ

௅

௛ୀଵ

൬ ௛ܹଶ

௛ݎ
−

1
݊௛
൰W୦ଶ൫ܵ௬௝௛ଶଶ + ௝௛ଶܤ ܵΨ୨୦ଶ

ଶ − 2B୨୦S(୷Ψ)୨୦ଶ൯                (5) 

 

3. Formulation of the Problem 
 

The formulation of Multi-objective integer nonlinear programming problem MOINLPP with a simple cost 
constraint to found the optimum sample and subsample sizes may be expressed as:  
 

Minimize [ܼଵ,ܼଶ, …  [݌ܼ,
Subject to 
∑ (ܿ௛଴ + ܿ௛ଵ ௛ܹଵ)݊௛ + ܿ௛ଶݎ௛ ≤ ଴௅ܥ
௛ୀଵ  

2≤ ݊௛ ≤ ௛ܰ            
2≤ ௛ݎ ≤ ො݊௛ଶ 
݊௛ܽ݊݀ݎ௛ܽݏݎ݁݃݁ݐ݊݅݁ݎ; ℎ = 1,2, … ,  ܮ
 
where ௝ܼ , (݆ =  1, 2, . . .  .denotes the CV  for ݆௧௛  characteristic which are to be minimized for fixed cost (݌,
Using the expression defined in Eq. (4) and Eq. (5), Eq. (6) can be expressed as: 
 

Minimize 
 

௝ܼ = ܥ ௝ܸ
ଶ = ෍෍ ௛ܹ

ଶ

݊௛ തܻ௝ଶ

௅

௛ୀଵ

൫ܵ௬௝௛ଶ + ௝௛ଶܤ ܵΨ୨୦
ଶ − 2B୨୦S(୷Ψ)୨୦൯

௣

௝ୀଵ

+ ෍෍ ௛ܹ
ଶ

തܻ௝ଶ

௅

௛ୀଵ

൬ ௛ܹଶ

௛ݎ
−

1
݊௛
൰W୦ଶS୷୨୦ଶ

ଶ

୮

୨ୀଵ

 

Or 
 
 

(6) 
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ఫܼሖ = ܥ ఫܸ
ଶ = ሖ ෍෍ ௛ܹ

ଶ

݊௛ തܻ௝ଶ

௅

௛ୀଵ

൫ܵ௬௝௛ଶ + ௝௛ଶܤ ܵΨ୨୦
ଶ − 2B୨୦S(୷Ψ)୨୦൯

୮

୨ୀଵ

+ ෍෍ ௛ܹ
ଶ

തܻ௝ଶ

௅

௛ୀଵ

൬ ௛ܹଶ

௛ݎ
−

1
݊௛
൰W୦ଶ൫ܵ௬௝௛ଶଶ + ௝௛ଶܤ ܵΨ୨୦ଶ

ଶ − 2B୨୦S(୷Ψ)୨୦ଶ൯
୮

୨ୀଵ

 

 
 ݋ݐݐ݆ܾܿ݁ݑܵ         

 
∑ (ܿ௛଴ + ܿ௛ଵ ௛ܹଵ)݊௛ + ܿ௛ଶݎ௛ ≤ ଴௅ܥ
௛ୀଵ         (7)  

2≤ ݊௛ ≤ ௛ܰ  
2≤ ௛ݎ ≤ ො݊௛ଶ 

݊௛ܽ݊݀ݎ௛ܽݏݎ݁݃݁ݐ݊݅݁ݎ; ℎ = 1,2, … ,  ܮ
 
4. Optimization Methods for Solving the Multi-objective Programming Problem 
 

The various methods proposed to solve the multi-objective programming problem of multivariate stratified 
sample surveys in the case of non-respondents can be classified according to the available information about the 
population. We proposed modified extended lexicographic goal programming (MELGP) technique to find 
compromise allocation in presence of the auxiliary attributes under non-response. 
 

4.1Modified Extended Lexicographic Goal Programming (MELGP) 
 

Goal programming (GP) is the multiple criteria decision making approach. Let us consider our goal program to 
have݌ goals, which may be݆ =  1, . . .  ௛ decision variables. These are the factors overݎWe also define ݊௛ܽ݊݀ .݌,
which the decision maker(s) have control and define the decision to be made.  Each goal has an achieved value, ௝ܼ 
, on its underlying criterion.  ௝ܼis a function of the decision variables.  The whole situation may expressed as 
below: 
 

݁ݖ݅݉݅݊݅ܯ ௝ܼ = ݂൫ ௝݊௛ ,  ௝௛൯ݎ
 ݋ݐݐ݆ܾܿ݁ݑܵ

෍(ܿ௛଴ + ܿ௛ଵ ௛ܹଵ)݊௛ + ܿ௛ଶݎ௛ ≤ ଴ܥ

௅

௛ୀଵ

 

2≤ ݊௛ ≤ ௛ܰ 
2≤ ௛ݎ ≤ ො݊௛ଶ 
௝݊௛ܽ݊݀ݎ௝௛ܽ݀݊ܽݏݎ݁݃݁ݐ݊݅݁ݎ ௝݊௛ ∈ Ƒ;ℎ = 1,2, … ,  ܮ

 
Note that in this generic form no assumptions have yet been made about the nature of  
the decision variables of goals. The decision maker(s) sets a real target level for each goal denoted by 
௝ܼ
∗(generally an individual optimal of the ݆௧௛  objective).  This then leads to the basic formulation of the ݆௧௛  goal:  

 

ఫܼ෡ + ௝݀
ି − ௝݀

ା = ௝ܼ
∗ , 

 

where ௝݀
ିܽ݊݀ ௝݀

ା  are negative and positive deviational variables. They are also called goal variables. Sometimes 
the set of goals are termed as soft constraints. That is, the decision maker(s) desires to optimize each goal but if 
the goal is not achieved then this does not imply that the solution is infeasible.  Goal programming also allows for 
an addition of a set of linear programming style hard constraints whose violation will make the solution 
infeasible. These are modeled by adding the condition  
 

ఫ݊ෝ ∈ Ƒ 
 

whereƑ is feasible region established by points in decision space.  
 

Finally, the unwanted deviational variables are put into an achievement function whose purpose is to minimize 
them and ensure that solution is as close as possible to the set of desired goals. 
 

(8) 
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Lexicographic goal programming is termed as pre-emptive goal programming.  The lexicographic ordering 
philosophy is available via the priority structure of the achievement function.  All unwanted deviations are 
minimized at each priority level.  The generic form program of compromise allocation can be written as: 
 

ܽ݁ݖ݅݉݅݊݅ܯ = ቂ ଵ݂ ቀ ௝݀
ି, ௝݀

ାቁ , ଶ݂ ቀ ௝݀
ି, ௝݀

ାቁ , … , ௣݂ ቀ ௝݀
ି, ௝݀

ାቁቃ 
 
 ݋ݐݐ݆ܾܿ݁ݑܵ
ఫܼ෡ + ௝݀

ି − ௝݀
ା(≤ ݎ݋ ≥) ௝ܼ

∗ , 
ො݊ ∈ Ƒ 
௝݊௛ܽ݊݀ݎ௝௛ܽ݀݊ܽݏݎ݁݃݁ݐ݊݅݁ݎ ௝݊௛ ∈ Ƒ;ℎ = 1,2, … ,  ܮ

 
where ଵ݂ , ଶ݂ ,··· , ௣݂represent priority-wise functions and ௝݀

ି,   ௝݀
ାare vectors of unwanted deviations in the 

respective priority. The other variant of goal programming is Weighted Goal Programming (WGP), which 
formulate to minimize a composite objective function formed by a weighted sum of unwanted deviational 
variables. The third is MINMAX (Chebyshev ) Goal Programming, which attempts to minimize the maximum 
deviation from the desired goals.  
 

In most of the cases, the goal programming variant is chosen without justifying the reason for the selection. It then 
appears as the choice of the goal programming variant is related to the analyst’s taste or to the capability of 
getting solution. However, the selection of the right goal programming variant or mix of variants is a crucial 
matter if we want the goal programming model to capture the essential features of the reality modeled [21]. Goal 
programming can be analyzed in terms of utility theory which always maximizes the utility.  The utility function 
described from the given situation may be of any form i.e. linear, non-linear, etc and a certain satisfaction level of 
aspiration for a particular goal can be set within a feasible space [21].  A goal program becomes equivalent to 
minimize the weighted discrepancy for a certain aspiration level ∀݆ =  1, 2, . . .   .goals within a feasible space ݌,
Now, if we consider that negative deviational variable and positive deviational variable have different impact on 
achievement function in a particular preference sequence.  
 

Let ଵܹ௝ ܽ݊݀ ଶܹ௝  represent the weights of normalizing parameter and preferential of negative deviation variable 
and positive deviation variable on the ݆௧௛goal respectively, then following formulation is discussed in [21]: 
 

ܽ݁ݖ݅݉݅݊݅ܯ = ෍ቂ ௝݂ ቀ ଵܹ௝݀௝ି, ଶܹ௝ ௝݀
ାቁቃ

௣

௝ୀଵ

 

 

 ݋ݐݐ݆ܾܿ݁ݑܵ
 

ఫܼ෡ + ௝݀
ି − ௝݀

ା(≤ ݎ݋ ≥) ௝ܼ
∗ ,                                                                                                                     (10) 

ఫ݊ෝ ∈ Ƒ,ℎ = 1,2, … ,  ܮ
 

The maximum utility function may subject to deviate from its desired aspiration level. An Archimedean goal 
programming model has a clear utility interpretation; it implies the maximization of a separable and additive 
utility function in the ݌ attributes considered [21].  The MINMAX (Chebyshev) structure corresponds to a utility 
function where the maximum deviation is minimized. This structure is discussed in [21] as: 
 
 ܦ݁ݖ݅݉݅݊݅ܯ
 
 ݋ݐݐ݆ܾܿ݁ݑܵ
 

ൣ ௝݀
ି , ௝݀

ା൧ ≤  (11)                                                                                                                                            ܦ
 

ఫܼ෡ + ௝݀
ି − ௝݀

ା(≤ ݎ݋ ≥) ௝ܼ
∗ 

 
ఫ݊ෝ ∈ Ƒ 

 

௝݊௛ܽ݊݀ݎ௝௛ܽ݀݊ܽݏݎ݁݃݁ݐ݊݅݁ݎ ௝݊௛ ∈ Ƒ;ℎ = 1,2, … ,  ܮ
 

(9) 
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where D is maximum deviation from utility.  The concept of extended goal programming, the utility 
maximization of the Archimedean and MINMAX (Chebyshev) goal programming models, can be generalized as:  
 

1)݁ݖ݅݉݅݊݅ܯ − ܦ(ߩ + ෍ቂߩ ௝݂ ቀ ଵܹ௝݀௝ି, ଶܹ௝ ௝݀
ାቁቃ

௣

௝ୀଵ

 

 
 ݋ݐݐ݆ܾܿ݁ݑܵ
 

ቂቀ ଵܹ௝݀௝ି, ଶܹ௝ ௝݀
ାቁቃ ≤  (12)                                                                                                                        ܦ

 
ఫܼ෡ + ௝݀

ି − ௝݀
ା(≤ ݎ݋ ≥) ௝ܼ

∗ 
ఫ݊ෝ ∈ Ƒ 

௝݊௛ܽ݊݀ݎ௝௛ܽ݀݊ܽݏݎ݁݃݁ݐ݊݅݁ݎ ௝݊௛ ∈ Ƒ;ℎ = 1,2, … ,  ܮ
 

Parameter ρ assigns the importance attached to the minimization of the weighted sum of unwanted deviation 
variables.  Above formulation increase the feasible region by relaxing the constraint  (1 − ](ߩ ଵܹ௝ ௝݀  , ଶܹ௝ ௝݀ ]≤ D 
imposed in [21] into  [ ଵܹ௝ ௝݀ , ଶܹ௝ ௝݀ ]   ≤  as 0 ≤ ρ ≤ 1. Integer nonlinear programming problems have a small ܦ
feasible solution grid and we are already compromising on allocating sample size.  This will help us to find 
feasible and optimal solution considering larger grid using this relaxation.  
 

4.2Other Techniques 
 

4.2.1Fuzzy Programming (FP) 
 

When the optimal solution is not a firmly decisive solution, instead a compromise solution is required for the 
problem.  The problem is required to be formulated into a fuzzy programming problem [10].  
 

Let ( ௝ܼ
∗) be the optimal value of ( ௝ܼ) obtained by solving the MOINLPP (7). 

 

Further let  
 

ఫܼ෩   =  ఫܼ෩ (݊ଵ ,݊ଶ , . . . ,݊௛  , . . . ,݊௅  )  
 
Denote the value of the CV under the compromise allocation, where ݊௛  ; ℎ =  1, 2, . . . ,   .are to be worked out ܮ
Obviously  

ఫܼ෩ ≥ ௝ܼ
∗ܽ݊݀ ఫܼ෩ − ௝ܼ

∗ ≥ 0;  ݆ = 1,2, … ,  ݌
 

Will give the increase in variance due to not using the individual optimum allocation for ݆௧௛  characteristic. 
 

To obtain a fuzzy solution, we first compute the maximum value ܷ௞  and the minimum value ܮ௞ , for each 
݇ =  1, 2, . . . ,   .݌
 

Now,  
௞ܮ   = min

௝
ܼ௞൫݊௛∗ ,௝ ൯ܷ௞   = max 

௝
ܼ௞൫݊௛∗ ,௝ ൯ 

 

where ݊௛∗ ,௝   denote the optimum allocation for the ݆௧௛  charcteristic in four strata.  
 

The differences of the maximum and minimum values of the ܼ௞  are denoted by ݀௞ = ܷ௞ − ௞ܮ ,݇ =  1, 2, . . .  .݌,
The fuzzy programming formulation of the MOINLPP in (7) is given by the following INLPP:  
 
 ߜ݁ݖ݅݉݅݊݅ܯ
 ݋ݐݐ݆ܾܿ݁ݑܵ
ఫܼ෡ − ௞݀ߜ ≤ ௝ܼ

∗ 
 ݎ݋

ఫܼ෡ሖ
ሖ − ௞݀ߜ ≤ ఫܼ

∗ሖ  
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∑ (ܿ௛଴ + ܿ௛ଵ ௛ܹଵ)݊௛ + ܿ௛ଶݎ௛ ≤ ଴௅ܥ
௛ୀଵ                                                                                                    (13) 

2≤ ݊௛ ≤ ௛ܰ 
2≤ ௛ݎ ≤ ො݊௛ଶ 
݊௛ܽ݊݀ݎ௛ܽݏݎ݁݃݁ݐ݊݅݁ݎ; ℎ = 1,2, … ,  ܮ
 
4.2.2The value Function Technique (VFT) 
 

Khan et al.and Diaz-Garcia and Ulloa expressed problem under the value function technique as [29]: 
 

ቌ෍൫߮݁ݖ݅݉݅݊݅ܯ ௝ܼ
ଶ൯

௣

௝ୀଵ

ቍ 

 ݋ݐݐ݆ܾܿ݁ݑܵ
 
∑ (ܿ௛଴ + ܿ௛ଵ ௛ܹଵ)݊௛ + ܿ௛ଶݎ௛ ≤ ଴௅ܥ
௛ୀଵ                                                                                                     (14) 

2≤ ݊௛ ≤ ௛ܰ 
2≤ ௛ݎ ≤ ො݊௛ଶ 
݊௛ܽ݊݀ݎ௛ܽݏݎ݁݃݁ݐ݊݅݁ݎ; ℎ = 1,2, … ,  ܮ
 
where ߮(.) is a scalar function that summarizes the importance of each of the coefficients of variance of the p 
characteristics. Usually, ߮(.) is taken as the weighted sum of the squares of p coefficient of variances. Under this 
property Eq. (14) becomes: 
 
 

݁ݖ݅݉݅݊݅ܯ ቌ෍ߙ௝ ௝ܼ
ଶ

௣

௝ୀଵ

ቍ 

 
 ݋ݐݐ݆ܾܿ݁ݑܵ
 
∑ (ܿ௛଴ + ܿ௛ଵ ௛ܹଵ)݊௛ + ܿ௛ଶݎ௛ ≤ ଴௅ܥ
௛ୀଵ                                                                                                     (15) 

2≤ ݊௛ ≤ ௛ܰ 
2≤ ௛ݎ ≤ ො݊௛ଶ 
݊௛ܽ݊݀ݎ௛ܽݏݎ݁݃݁ݐ݊݅݁ݎ; ℎ = 1,2, … ,  ܮ
 
where∑ ௝ߙ = 1, ௝ߙ ≥ 0௣

௝ୀଵ  j = 1,2, ...,p; ߙ௝  are the weights according to the relativeimportance of the 
characteristics. When complete information is available, the weights may  
be decided according to some measures of the relative importance of the characteristics.  
 

For Example, weights  ߙ௝may be taken as ߙ௝ߙ ∑ ௝ܵ௛
ଶ  , ݆ = 1,2, … ௝ߙݎ݋݌, = ∑ߚ ௝ܵ௛

ଶ ,௅
௛ୀଵ

௅
௛ୀଵ where β is the constant 

of proportionality.  Without loss of generality, we can assume that∑ ௝ߙ = 1௣
௝ୀଵ . Thus,  

 

෍ߙ௝

௉

௝ୀଵ

= ෍෍ߚ ௝ܵ௛
ଶ

௅

௛ୀଵ

௉

௝ୀଵ

 

 ݎ݋

ߚ = 1 ෍෍ ௝ܵ௛
ଶ

௅

௛ୀଵ

௉

௝ୀଵ

൘  
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ܶℎ݅ݏ݁݀݅ݒ݋ݎ݌ ݏ 

௝ߙ =  ෍ ௝ܵ௛
ଶ

௅

௛ୀଵ

෍෍ ௝ܵ௛
ଶ

௅

௛ୀଵ

௉

௝ୀଵ

൙  

 
Using Eq.  (4) and Eq.  (5), MOINLPP (7) can be rewritten as:  
݁ݖ݅݉݅݊݅ܯ ௝ܼ = ܥ௝ߙ  ௝ܸ

ଶݎ݋ ఫܼሖ = ܥ௝ߙ ఫܸ
ଶሖ  

 ݋ݐݐ݆ܾܿ݁ݑܵ
 
∑ (ܿ௛଴ + ܿ௛ଵ ௛ܹଵ)݊௛ + ܿ௛ଶݎ௛ ≤ ଴௅ܥ
௛ୀଵ                                                       (16) 

2≤ ݊௛ ≤ ௛ܰ 
2≤ ௛ݎ ≤ ො݊௛ଶ 
݊௛ܽ݊݀ݎ௛ܽݏݎ݁݃݁ݐ݊݅݁ݎ; ℎ = 1,2, … ,  ܮ
 

5. Application 
 

[Data Source:  www.agcensus.usda.gov]  
 

ଵܻ : The quantity of Corn harvested in 2007  
ଶܻ : The quantity of Soybean harvested in 2007  
  ଵ : The quantity of Corn harvested in 2002ߖ
  ଶ : The quantity of Soyabean harvested in 2002ߖ
 

Here, ഥܻଵ= 22698622.75 and തܻଶ= 4306561.045  
 

It is assumed that total cost of survey in Case 1 isܥ଴ =331 and in Case 2 is ܥ଴  =346 units.  
 
We considered last 27%, 30%, 27% and 20% values in each stratum as non response respectively.  
 

The area of counties is used to stratify the population into 4 strata.  
 

Letߖ௝௛௜  is artificial dichotomous variable, the cut off for quantitative variable to be transformed into attribute is 
set as respective stratum mean for each characteristic in the ℎ௧௛ stratum defined below:  
 
ଵଵ௜ߖ  =1,   if quantity is greater than 11778829.32 
0,   otherwise 
 
ଵଶ௜ߖ   =1,   if quantity is greater than 17339481.28 
0,   otherwise 
 
ଵଷ௜ߖ   =1,   if quantity is greater than 21277529.04 
0,   otherwise 
 
ଵସ௜ߖ  =1,   if quantity is greater than 29384771.62 
0,   otherwise 
 
ଶଵ௜ߖ   =1,   if quantity is greater than 3340383.227 
0,   otherwise 
 
ଶଶ௜ߖ   =1,   if quantity is greater than 4727488.8  
0,   otherwise 
 
 ଶଷ௜=1,   if quantity is greater than 5215178.667ߖ
0,   otherwise 
 
ଶସ௜ߖ   = 1,   if quantity is greater than 7740663.538  
0,   otherwise 
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The data statistics are presented in the APPENDIX:  
 

Figure 1: CV under Different Weights 
 

 
 

We assumed equal weights for both the characteristics in value function technique and extended lexicographic 
goal programming.  The minimized CVs sample and subsample optimal allocations using the three Multiobjective 
optimization techniques for two cases of nonresponse using Data set are presented as:  
 

Table 2 gives the optimum allocations for both cases of non-response using auxiliary attributes by different 
optimization methods.  Results show that value function technique gives minimum value of objective function 
(i.e. CV) for compromised allocations. Howeverparameter ߩ = 0.1 andܹ = 0.5 are randomly selected. The 
results by changing these values are discussed in the Fig 1.  
 

Fig 1 shows the relation of changing weights with CVs in both data sets. In extended lexicographic programming 
technique for first data set, CV of corn harvested in 2007 is higher when we use 0.4≥ ߩ as compared to soyabean 
harvested in 2007.  Both CVs are equal when we use ρ=0.6 but in case2, CV of corn harvested in 2007 is higher 
for all ρ. Value function technique shows higher difference among CVs with changing weights.  CV of corn 
harvested in 2007 is higher than CV of soya bean harvested in 2007 for every arbitrary selection of weights in 
both cases i.e. case1 and case2.  
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Appendix 
 

Table 1.Summary statistics 

 

 
 

Table 2: Compromise Allocations and Corresponding Values of the Objective Functions Obtained by 
Different Methods 

 

 


