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Abstract 
 

This paper discusses and implements a nonparametric statistical test procedure for organization scale efficiency. 

This procedure allows the practitioner to test whether the observed scale efficiency score is real or due to 
sampling variation. Our test procedure is based on the work of Simar and Wilson (1998, 2002). However, instead 

of considering a global test to give an average measure of the efficiency of a sector of activity, we consider an 

individual test which gives a measure of the scale efficiency for each organization. We believe that this type of 
analysis is the most used in empirical studies. The test is simulated in a Monte Carlo study and is shown to have 

the correct size in most cases. In contrast, the shape of the estimated power function is not expected. This can be 

explained by the “curse of dimensionality” problem which is often raised in this context. 
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1. Introduction 
 

In this paper, we address the question of the qualitative measurement of returns to scale in organizations. This 

measure allows us to determine if organizations’ activities are characterized by either increasing, decreasing or 
constant returns to scale. Our approach is anchored in the DEA tradition. Returns to scale have received 

substantial attention, leading to three measurement methods under the DEA approach: the scale efficiency method 

(see Färe and Grosskopf (1985) and Färe et al. (1994), the sum of intensity variables method of Banker (1984), 
Banker and Thrall (1992) and Färe and Grosskopf (1994), and the dual variable-sign-method of Banker et al. 

(1984). Banker et al. (1994) have shown that these three methods are equivalent. It is not uncommon however, 

that practitioners using these methods neglect the statistical content of the efficiency measures and do not 
distinguish between the true value and the estimator. 
 

If the data are generated by a distribution with bounded support, based on the real production set, then the scale 
efficiency is measured with respect to an estimated frontier with data obtained from an unobserved Data 

Generating Process (DGP). Therefore, the observed organization’s efficiency is noisy and spoiled by statistical 

noises. That is, efficiency measurements are subject to sampling variations. Consequently, it is necessary to adopt 

a formal statistical methodology that differentiates between the real efficiency value and its estimator in order to 
evaluate the statistical significance of results concerning the returns to scale of an organization. 
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Banker (1993, 1996) proposed tests of model structure based on ad-hoc distributional assumptions. However, 
Kittelsen (1997) raises two more problems with this approach. First, the efficiency measure estimators are biased 

in small sample (finite sample) and converge at a very slow rate when the dimensionality of the problem is large. 

Second, the components of the scale efficiency score estimators are correlated and consequently can never follow 
asymptotically the Fisher distribution found by Banker. Löthgren and Tambour (1999) used the approach 

developed by Färe et al. (1994) to measure the scale efficiency and address the implementation of a global test of 

the returns to scale. They develop a test procedure based on a naïve bootstrap procedure to approximate the test 

statistic distribution under the null hypothesis. However, Simar and Wilson (1999, 2000a) have shown that the 
naïve bootstrap method does not converge for non parametric estimators of efficiency measures of the DEA type.  

Simar and Wilson (2002) develop a test procedure based on the smooth bootstrap method. This method consists in 

smoothing the probability distribution of the efficiency scores with a convolution kernel. Then the authors use a 
reflection method (Silverman, 1986 and Schuster, 1985) to correct the estimator of the probability density in the 

neighborhood of the boundaries. 
 

Recently, Kneip et al. (2008, 2009) developed a consistent bootstrap method for inference about the efficiency of 
a single, fixed point. However, this method requires complicated coding and is not appropriate for approximating 

the sampling distribution of a test statistic (Simar and Wilson, 2011). In this article, we adopt the approach 

developed by Simar and Wilson (2002) to handle the statistical test procedure, but we consider a specific test 

problem for each organization instead of a global procedure. This means that our test procedure provides an 
estimate of the scale efficiency for each organization. The problem of test is repeated in this case, as many times 

as the number of organizations. 
 

The performance of the test procedure is assessed through a Monte Carlo experiment. We study, at first the 

reliability of the test. Our simulation experiments will focus on calculating the difference between the nominal 

and the real size in case of a technology of one input and one output, therefore in case of two inputs and one 

output. However, the reliability condition is not sufficient. The hypothesis tested may be true, but it may as well 
be false. For this reason we conduct simulation experiments in order to estimate the power curve for a technology 

of one input and one output. 
 

2. Production technology and returns to scale 
 

Consider a production activity that use input quantities 
mx    to produce the output quantities 

sy   . It is 

common practice in economic analysis to describe the activity of a productive activity by means of the production 

set   of physically attainable points  ,x y : 

    , ,  is feasiblem sx y x y

   .
1
                                                                                          (1) 

 

To characterize the returns to scale environment of the firms and to test for their type, specific production sets are 

required. The returns to scale are characterized by the way one can either expand the scale in the production set or 

shrink it or both. That is, the technology exhibits non increasing (nirs), non decreasing (ndrs) or constant returns 

to scale (crs) depending on the values assumed by the positive scalar α in the following set: 

    , , for all k kx y x y       , k= nirs, ndrs and crs                                         (2) 

where [0,1)nirs  , [1, )ndrs    and [0, )crs   . A technology that exhibits ndrs, nirs or crs in different 

regions of the production frontier is said to be characterized by variable returns to scale (vrs). We denote this 

production possibility set by 
vrs . 

 

It is possible to define an input oriented technical efficiency measure in the sense of Farrell (1957) with respect to 

the various assumptions concerning the returns to scale. That is: 

    , min ,k kx y x y    , k= nirs, ndrs, crs and vrs                                                         (3) 

 

                                                
1
 We suppose that the production set   is closed, satisfies free disposal of inputs, is bounded for finite inputs and 

positive outputs require positive inputs. These are standard assumptions on the technology and are discussed in 

Shephard (1970) and Färe (1988), among others. 
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From Färe and Grosskopf (1985), the (technical) efficiency measures defined in (3) can be used to construct scale 

efficiency measures for each organization. A scale efficiency measure is the ratio of the efficiency measure under 
crs technology and a vrs type technology. That is: 

 
 
 1

,
, 1

,

crs

vrs

x y
S x y

x y




                                                                                                                   (4) 

We say that the production technology is of the crs type if  1 , 1S x y  . To determine the returns to scale of the 

technology when  1 , 1S x y   we compute a second ratio that is less restrictive than the initial ratio. That is: 

 
 
 

2

,
, 1

,

nirs

vrs

x y
S x y

x y




                                                                                                                  (5) 

If  2 , 1S x y   we say that the technology is characterized by decreasing returns to scale. Otherwise, i.e. 

 2 , 1S x y  , we say that the technology exhibits increasing returns to scale. 
 

3. Test of hypothesis for returns to scale 
 

In empirical research, the true model of Section 2 is unknown, so one can only aspire to approach it as closely as 
possible. Consequently, to identify and to characterize the returns to scale exhibited by a technology, we have to 

construct a statistical model to estimate the necessary parameters and then construct a formal hypothesis test 

procedure. We can derive the test procedure from Section 2 as a sequence of two sub-tests of hypothesis. These 
are: 

 

 
0 1

1

#1: : , 1

             : , 1A

Test H S x y

H S x y




 

If the test concludes that we reject the null hypothesis, then we conduct the following test:  

 

 

'

0 2

'

2

#2 : : , 1

             : , 1A

Test H S x y

H S x y




 

To implement this procedure we need to estimate the technology with a consistent statistical model and then 

deduce the test and construct the appropriate decision criteria for hypothesis testing. This is done in the remaining 

of this section. 
 

3.1 Efficiency Scores Estimation 

Since   is unknown, it must be estimated from a sample   0
1

,
n

j j
j

x y


   of data on firms’ input and output 

quantities. The smallest convex envelop of the data gives the DEA estimator in the vrs case: 

  1 1 1

ˆ , , , 1  1, ,  
  

  
          

j n j n j nvrs m s

j j j j jj j j
x y x x y y j n .                                   (6) 

To obtain the estimators for the other types of returns to scale, ̂
nirs

, ̂
ndrs

 and ̂
crs

 it is sufficient to slightly 

alter the constraint on the sum of the  j . That is, in the nirs case we have 
1

1





j n

jj
, and in the ndrs 

1
1






j n

jj
 must hold and finally, to obtain a crs envelop, no constraints on the  j  are necessary other than non 

negativity of the λs. 

Substituting ̂
k

 for 
k

 in (3) yields the DEA estimator of  , k x y  given by: 

    ˆ ˆ, min ,k kx y x y    , k= nirs, ndrs, crs and vrs                                                          (7) 
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The estimators of the scale efficiency score are naturally defined as      1
ˆ ˆ ˆ, , ,crs vrsS x y x y x y   and 

     2
ˆ ˆ, , ,nirs vrsS x y x y x y  .

2
 

To insure the consistency of the estimator, it is necessary to specify a statistical model that allows us for a full to 
characterization of the data generating process (DGP). This is the content of the following assumption. 
 

Assumption 1: The set of observations   
1

,
n

j j
j

x y


 are identically and independently distributed (i.i.d.) random 

variables with probability density function  ,f x y  defined on the convex attainable set  . 

The construction of the statistical model is easier when we use the polar coordinate for the inputs instead of the 
usual Cartesian representation. To each input vector x we can associate a unique angle and radius. Thus, the 

density has two equivalent representations, f :    , , ,x y y  . This allows us to decompose the joint density 

as follows: 

       , , , yf y f y f y f y      ,                                                                                         (8) 

where all densities are well defined. 
 

Assumption 2: The probability density function  ,f x y  is continuous on the interior of   and 

  , , , 0f x z y z y   where    , , ,x z y x z y x   is any point on the frontier of  . 

 

Assumption 3: The efficiency measure  ,x y  is differentiable in x and y.
3
 

Assumption A1, A2 and A3 together define the statistical model that allows us to characterize the DGP, denoted 

 . In fact, the DGP is entirely characterized by the production possibility set   and the density f. That is, 

     , , , , ,f x y f y     .                                                                                              (8) 
 

This statistical model ensures the convergence of the estimator and permits a characterization of the asymptotic 

properties of nonparametric estimators of the DEA type. The consistency of the estimator  ˆˆ ˆ , f   is studied 

in Korostelev et al. (1995a, 1995b), Banker (1993), Kneip et al. (1998), among others.
4
  

 

Although DEA estimators have been widely used, inference about the underlying model structure or the 

efficiencies that are estimated remains problematic. Gijbels et al. (1999) derived the asymptotic distribution of a 

DEA efficiency estimators in the case of one input and one output. Jeong (2004) derived the limiting distribution 

of DEA efficiency estimators under vrs for the special case 1, 1m s   in the input orientation (or 1, 1m s   in 

the output orientation). Kneip et al. (2008) and Park et al. (2010) derived the limiting distributions of DEA 

efficiency estimators under vrs and crs (respectively) in a multivariate framework. However, these distributions 
contain several unknown quantities, and are not useful in a practical sense for inference (Simar and Wilson, 

2011). In this situation, the bootstrap method seams to offer a solution to make statistical inference on the basis of 

the DEA estimator.  Simar and Wilson (1998, 2000b) proposed bootstrap methods for inference about efficiency 

based on DEA estimators in a multivariate framework, but consistency of these procedures has not been 
established.  

                                                
2
 The DEA model adopted in this paper is input oriented. Obviously, the projection point may impact on the exact 

measurement of the RTS. Consequently, an output oriented model may lead to a different assessment of the returns to 

scale than the one obtained under an input oriented model. However important this problem is, the procedure developed 

here cannot discriminate between these characterizations as the statistical models these DEA estimators are not nested. 

The procedure proposed here can be translated to the output oriented case, however. 
3
 This assumption gives the necessary smoothness of the frontier function. Kneip et al. (1998) have shown that the 

convergence rate of the estimator depends on this smoothing condition. However, the smoothing condition we have 

used is slightly stronger than the one required for convergence. As shown by Kneip et al. (1998), it is sufficient that the 

efficiency measure satisfy a Lipschitz condition. 
4
 See Simar and Wilson (2000a) for a survey of the statistical properties of DEA estimators. 
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Moreover, Simar and Wilson (1998) incorporated a strong assumption about the homogeneity of the inefficiency 

process. Kneip et al. (2008) proposed two bootstrap procedures for inference about efficiency, and proved 
consistency of both methods. However, the method requires solving n auxiliary linear programs for each of B 

bootstrap replications, leading to a formidable computational burden. Recently, Kneip et al. (2009) developed a 

consistent bootstrap method for inference about the efficiency of a single, fixed point while avoiding the 

computational burden of Kneip et al. (2008). However, Simar and Wilson (2011) show that the method of Kneip 
et al. (2009) is not appropriate for approximating the sampling distribution of a test statistic to different points in 

the sample space.  In this paper, we adopt the approach of Simar and Wilson (1998). Despite the refinements 

made to the bootstrap method, the smooth bootstrap of Simar and Wilson is easy to implement, to generate 
pseudo-samples and approximate the sampling distributions. 
 

3.2 Bootstrapping Test Statistics for Returns to Scale 
 

With the statistical model above, we are now in a position to give a formal procedure to test returns to scale. The 

problem at hand to test the null hypothesis 0H : 0   against an alternative hypothesis of the following 

form: 0:AH   . In our problem, the parameter   is represented by the ratio  1 ,S x y  for the first test and 

 2 ,S x y  for the second. For both test procedures, the null hypothesis is 0H : 0 1   and for both tests we also 

have a consistent estimator ̂  of  :  1
ˆˆ ,S x y   for  1 ,S x y   and  2

ˆˆ ,S x y   for  2 ,S x y  . In 

other words, the procedure consists in inferring whether or not 1   by measuring the distance between the 

estimate of   and 1 and using a criterion to determine if the distance is small enough to conclude that they are in 

fact equal. To do this we need the distribution of the test statistic  0̂   under the null hypothesis, 0H . This 

statistical distribution is difficult to define. We use in this case, the bootstrap methodology. This method consists 

in replicating identically the DGP many times, let’s say B times. This allows us to generate, from the original 

sample 0 , B pseudo-samples: 
* , 1, ,b b B   . Then, the original estimation method (DEA in our case) is 

applied to each pseudo-samples to obtain the bootstrap estimator of the test statistic 
*ˆ
b  of ̂ . This procedure 

allows us to estimate the empirical distribution of  *ˆ ˆ   used to approximate the unknown distribution of the 

statistic  0̂   under 0H . That is, 

   *

0 0
ˆˆ ˆ ˆ, ,

approx

H H                                                                                                        (9) 

where ̂  is a consistent estimator of the DGP   under the hull hypothesis 0 : 1H   .  
 

To obtain the pseudo-scores 
*̂  we have to identify the correct bootstrap estimators 

*ˆ crs , 
*ˆ vrs  and 

*ˆ nirs  of 

ˆcrs , ˆvrs  and ˆnirs  respectively. To obtain their estimators, we use a smooth bootstrap methodology developed 

by Simar and Wilson (1998) and we suppose that each pseudo-efficiency is generated from a DGP under the same 

type of returns to scale than the initial efficiency score. This implies that the returns to scale should be constant 

for the first test and the returns to scale should be non-increasing for the second test. This ensures that the pseudo-

scores take permissible values (less than 1). Therefore, equation (9) under 0H  must be rewritten as follows: 

   *

1 1 1
ˆ ˆ ˆ ˆ1

approx
crs crsS S S     for Test # 1                                                                                   (10) 

and 

   * ˆˆ ˆ ˆ1
approx

nirs nirs       for Test # 2.                                                                                  (11) 

Our approach is based on Simar and Wilson (2002) as we use the same smooth bootstrap methodology to generate 

the pseudo-scores. However, we consider a specific test problem for each organization instead of a global test. 
This means that the problem of test is repeated as many times as the number of DMU, n. 
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To generate the pseudo-efficiencies 
*ˆ crs , 

*ˆ vrs  and 
*ˆ nirs  we use a homogenous bootstrap methodology 

developed by Simar and Wilson (1998). That is, the efficiency score   is independent of  , y : 

   ,f y f   .  

A consistent estimator of f, obtained using a kernel estimator and corrected by Schuster’s (1985) and Silverman 

(1985) is defined as follows: 

ˆ2 ( ) if 1ˆ ( )
0 otherwise

c
g t t

f t


 


, where  
1

ˆ ˆ21
ˆ

2

j n j j

j

t t
g t

nh h h

 
 





      
     
        

                           (12) 

We use a normal Gaussian kernel, denoted  , and the bandwidth, h, is set following the normal reference rule 

(Silverman (1986)). To generate the pseudo-scores 
*ˆ , , , k k crs vrs nirs  from ˆ cf , we propose an algorithm 

composed of five steps: 
 

Step 1: Compute  ˆ ˆ ,   1, ,    crs crs

j j j jx y j n  using equation (7). 
 

Step 2: Generate smoothed resampled pseudo-efficiencies as follows. First generate  *, 1, ,j j n    by 

resampling with replacement a sample of size n, from the empirical distribution  ˆ , 1, ,  k

j j n . Then generate 

the sequence  *, 1, ,j j n    as follows: 

 

 

* * * *

*

* *

if   1

2 otherwise 

j j j j

j

j j

h h

h

   


 

   
 

 

 , where  * 0,1j N  . 

Then, generate the pseudo-efficiencies 
*

j  using  * * * * 2 2

ˆ
ˆ/ 1 /


       
kj j h  where 

* *

1
(1/ )

n

jj
n 


  . 

 

Step 3: Compute the pseudo variable inputs, 
* * ˆ(1/ )  k

j j j jx x . 
 

Step 4: Compute the bootstrapped efficiency measures 
*̂ crs

j
 using the pseudo variable inputs based on the 

following program: 

   * *

1 1

ˆ , min ,  , 0     
 

 
     

j n j ncrs

j j j j jj j
x y x x y y ; 

and  

   * *

1 1 1

ˆ , min ,  , 1,  0      
  

  
       

j n j n j nvrs

j j j j j jj j j
x y x x y y . 

 

Step 5: Repeat steps 2-5 B times to obtain B efficiency measures  *ˆ , 1, , , 1, ,  ,k

jb j n b B k vrs crs     .  

If the test concludes that we reject the null hypothesis, then one conduct the second test. To generate the data in 

this second case, we use the following:  
 

Step 1: Compute  ˆ ˆ ,   1, ,    nirs nirs

j j j jx y j n  using equation (7). 
 

Steps 2 and 3: As above. 
 

Step 4: Compute the bootstrapped efficiency measures 
*̂ nirs

j  and 
*̂ vrs

j  using the pseudo variable inputs based on 

the following program: 

   * *

1 1 1

ˆ , min ,  , 1,  0      
  

  
       

j n j n j nnirs

j j j j j jj j j
x y x x y y ; 

And 
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   * *

1 1 1

ˆ , min ,  , 1,  0      
  

  
       

j n j n j nvrs

j j j j j jj j j
x y x x y y . 

 

Step 5: Repeat steps 2-5 B times to obtain B efficiency measures  *ˆ , 1, , , 1, , , ,k

jb j n b B k vrs nirs     .  

We replicate B times the statistic 
1

ˆ ˆ ˆ/crs vrs

j j jS    for each  ,j jx y  in the sample set 0 . Then, we obtain B 

pseudo-values 
* * *

1
ˆ ˆ ˆ/ , 1, ,crs vrs

jb jb jbS b B     for all 1, ,j n  . For the second test, the application of the 

bootstrap procedure on the statistic 
2

ˆ ˆ ˆ/nirs vrs

j j jS    leads to B replications: 
* * *

2
ˆ ˆ ˆ/ , 1, ,nirs vrs

jb jb jbS b B     for 

each production plan in 0 . 
 

Once the pseudo-scores 
*̂  are generated, we proceed to the decision rule for each organization. The true critical 

value of the test satisfies  0 0 0
ˆPr :c H         . Since we do not observe this distribution, we use 

the bootstrap analog,  * *

0
ˆˆ ˆPr ,c H       where the equality holds asymptotically. In practice,

*c  is an 

approximation of the true critical value, c . To obtain 
*c , we start by sorting in ascending order the pseudo-

scores  *ˆ ˆ
b   for 1, ,b B  . Then, we eliminate  1 100   percent of the values at the right end of the 

ordered sequence of bootstrapped statistics. The critical value 
*c  is then the right end of this truncated 

sequence. Because we use a limited bootstrap experiment, we can only obtain the following approximation by 

substituting this bootstrapped 
*c : 

 *

0 0
ˆPr c H                                                                                                                     (13) 

 

Then, the decision rule is the following: reject the null hypothesis 0 0: 1H    if, for a given size  , 
*ˆ 1 c   . 

Hypothesis tests can be more convincingly used by giving the marginal probability of rejections, or p-value. Let 

ˆ
obs  denote a realized value of the test statistic ̂ . The p-value for 0H  is defined to be 

 0 0
ˆ ˆPr :obsp H      . Under 0H , this is equivalent to  0 0 0

ˆ ˆPr obsp H       . The bootstrap 

analogue of this last expression is: 

 *

0 0
ˆˆ ˆ ˆˆ Pr ,obsp H                                                                                                        (14) 

Note that we have ˆ ˆ
obs   and ̂  is a consistent estimator of 0 . Then, equation (14) is asymptotically 

equivalent to the following probability: 

 *

0
ˆˆ ˆˆ Pr ,obsp H                                                                                                                  (15) 

If   is the size of the test, then we reject 0H  when p̂  .  
 

4. A Monte Carlo experiments 
 

In this section we conduct a series of Monte Carlo experiments to evaluate the performance of our test procedure.
5
 

The experiments are conducted under the following general framework. At each Monte Carlo iteration we use two 
thousand Bootstrap replications, B=2000, for each units and the experiment is repeated one thousand times, 

N=1000. In each Monte Carlo experiment, we compute the test statistic for each DMU, using the data generated 

for the inputs and the outputs. Then we use the bootstrap procedure presented in the previous section to determine 

the p-value for each DMU. For each Monte Carlo experiment, we estimate the real size of each test as the number 
of times the null hypothesis is rejected divided by the number of experiments (N), given a nominal size (the 

theoretical ). For the bootstrap simulations in each Monte Carlo experiment, we use a normal density kernel and 

Silverman normal rule to calculate the bandwidth. 

                                                
5
 The Monte Carlo experiment uses a SAS program written by the authors. 
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The diagnostic of the performance of the tests with respect to the size is easy to understand: If the theoretical size 
is correct, the real size calculated from the Monte Carlo experiment must be in the neighborhood of this true 

value. We conduct a total of eight experiments. They are all with one output (s=1), but we consider either one or 

two inputs,   1,2m , samples of DMUs of size ten and twenty,  10,20n , and all experiments are ran for 

test sizes 0,05   and 0,01  . 
 

We consider the performance of both tests separately. Let us start with an assessment of the performance of the 

first test. In order to have a tractable problem, easy to understand, we have used a simple data generating process 

where the number of output is set to one in all experiments and the number of inputs is set to either one or two 

depending on the experiment. The inputs of DMU j,  ijx , are assumed to be independently and identically 

uniformly distributed (iid) on the interval  1,9 . To generate the output under the null hypothesis of constant 

returns to scale, we proceed as follows. First we generate a sequence of n independently distributed standard 

normal noises,  0,1N , jv  for j=1,...,n. Then, this noise is used to generate the output for the j
th
 DMU,  jy , 

according to the following constant returns to scale Cobb-Douglas production structure: 

0.11/

1

, 1, ,j

m
vm

j ij

i

y x e j n




                                                                                                          (16) 

 

Table 1 summarizes the results of the eight Monte-Carlo experiments related to the performance of test #1. A 

comparison of the real size from the Monte-Carlo experiment and the nominal size (the theoretical size,  ), 

shows that the results are close to the expected size at both one and five percent and for both sample sizes, 
confirming the validity of our test procedure. The first part of the table presents the results for n=10. On average, 

the real size is equal to 0,0443 for  1m s  , a number fairly close to the nominal size of 0,05  . The 

distortion between the sizes is null for DMU 5 and negligible for DMU 1 and 6 with a real size of 0,051 and 0,049 

respectively. When we increase the number of inputs to two,  2m  , the average real size is now equal to 

0,0395. That is, the distortion in the size increases, but this can probably be explained by the curse of 

dimensionality. Similar remarks apply for the size 0,01  . The real size is equal to 0,0142 for the one-input 

experiment (m=1) and equal to 0.0128 for two-input experiment (m=2), which are still very close to the nominal 

size. 
 

When we increase the sample size to twenty, 20n  , the distortions decrease significantly, to almost 0,001 for 

both nominal sizes and both experiments with the number of inputs set to either one  1m   or two  2m  . 

This clearly shows that our test procedure is performing better when the sample size increases, as it would be 

expected. 
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Table 1: Monte-Carlo estimates of size 

Test #1 (H0 : CRS) 
 

DMU 

Nominal size 

0,05   0,01   

1m s   2, 1m s   1m s   2, 1m s   

n=10     
1 0,051 0,054 0,021 0,020 
2 0,035 0,029 0,012 0,003 
3 0,038 0,033 0,011 0,017 

4 0,039 0,034 0,018 0,012 
5 0,050 0,043 0,017 0,014 
6 0,049 0,051 0,015 0,017 
7 0,042 0,023 0,012 0,005 
8 0,040 0,049 0,007 0,015 
9 0,057 0,037 0,013 0,012 
10 0,042 0,042 0,016 0,013 

Mean 0,0443 0,0395 0,0142 0,0128 

n=20     
1 0,046 0,050 0,004 0,020 
2 0,055 0,052 0,013 0,028 
3 0,050 0,050 0,004 0,022 
4 0,054 0,054 0,011 0,010 
5 0,047 0,048 0,000 0,016 
6 0,044 0,051 0,020 0,019 
7 0,058 0,055 0,010 0,016 

8 0,041 0,053 0,010 0,022 
9 0,047 0,045 0,016 0,014 
10 0,059 0,056 0,017 0,003 
11 0,042 0,052 0,004 0,030 
12 0,045 0,037 0,004 0,009 
13 0,045 0,053 0,000 0,020 
14 0,040 0,054 0,014 0,023 
15 0,048 0,052 0,012 0,018 

16 0,049 0,053 0,020 0,020 
17 0,057 0,045 0,040 0,030 
18 0,043 0,051 0,010 0,000 
19 0,046 0,057 0,000 0,018 
20 0,049 0,052 0,018 0,022 

Mean 0,04825 0,051 0,01135 0,018 
 

We now tackle the performance of the second test. To do so, we need to generate data under the null hypothesis of 
non-increasing returns to scale (nirs). We consider separately the case of one input and two inputs. 

In the one input case, given that the  ijx  are generated as uniform iid random variables on the interval  1,9 , the 

output of the j
th
 DMU can be generated as follows: 

0.1

1 1
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              if  5

5 1
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2 2
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j j

j v
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x e x
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x e





 


  
 

 

                                                                                               (17) 

In the two-input case, we split the returns to scale regions not based on input levels, as in the one input case, but 

based on a reference output level. The procedure is as follows. First, using the randomly generated inputs, we 

compute the reference output level for the j
th
 DMU, 

1/ 2 1/ 2

1 2j jy x x . Then the output of this DMU is generated 

according to the following formulae:  
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This insures that all input combinations on the same isoquants exhibit the same type of returns to scale. To 

evaluate the performance of the second test, we proceed as we did with test #1, and we conduct the same eight 
Monte-Carlo experiments (the combinations of s=1, m=1, 2, =0,01, 0,05, and n=10, 20). The results of these 

experiments are summarized in Table 2. The results are very similar to those of Table 1. The simulated sizes are 

very close to the nominal sizes, again confirming the good performance of our test. When the number of DMU is 

set to ten, n=10, and 1m s  , the average simulated size is equal to 0,047, a distortion of 0,003 for a nominal 

test size of 0,05. When the sample of DMU is increased to twenty, 20n  , the distortion of the size is even 

smaller, as it is equal to 0,0023. The distortion is zero for DMUs number 2, 4 and 16. The distortion increases 
however when the number of inputs increases to 2 from 1 (all other parameters equal). As in the case of the first 

test, this may be attributed to the curse of dimensionality. The same phenomena are observed at size 0,01  . 

For 1m s   and 10n  , the simulated size is 0,0155 and decreases to 0,01395 when the number of DMUs 

increases to twenty ( 20n  ). The difference between the nominal size and the simulated size is null or virtually 

null for three DMUs (4, 6 and 19). Again, these results confirm our initial conclusions that the performance of the 

test is good and improves when the size of the sample increases, as expected. 
 

Table 2: Monte-Carlo estimates of size 

Test #2 (H0 : NIRS) 
 

DMU 

Nominal size 

0,05   0,01   

1m s   2, 1m s   1m s   2, 1m s   

n=10     

1 0,047 0,060 0,017 0,028 
2 0,043 0,036 0,012 0,012 
3 0,050 0,041 0,018 0,019 
4 0,048 0,039 0,018 0,014 
5 0,057 0,039 0,023 0,015 
6 0,053 0,044 0,017 0,017 
7 0,047 0,028 0,015 0,004 
8 0,041 0,047 0,011 0,014 

9 0,045 0,035 0,015 0,007 
10 0,039 0,057 0,009 0,020 

Mean 0,047 0,0426 0,0155 0,015 
n=20     

1 0,058 0,057 0,008 0,018 
2 0,050 0,052 0,017 0,008 
3 0,064 0,120 0,014 0,024 
4 0,049 0,031 0,012 0,010 
5 0,057 0,068 0,020 0,013 

6 0,052 0,070 0,011 0,016 
7 0,048 0,059 0,014 0,018 
8 0,046 0,044 0,016 0,005 
9 0,054 0,056 0,014 0,016 
10 0,038 0,050 0,012 0,022 
11 0,090 0,062 0,016 0,020 
12 0,053 0,062 0,023 0,014 
13 0,044 0,069 0,018 0,026 

14 0,046 0,055 0,007 0,021 
15 0,038 0,038 0,016 0,018 
16 0,051 0,057 0,011 0,019 
17 0,044 0,036 0,006 0,012 
18 0,058 0,024 0,018 0,010 
19 0,052 0,030 0,010 0,018 
20 0,054 0,042 0,016 0,009 

Mean 0,0523 0,0541 0,01395 0,01585 
 

The performance of a test is not only related to its correct size, it must also have a high power. In the following 

we construct Monte-Carlo experiments to assess the power of our test. The general framework of the experiments 

is as follows. Data are generated under the alternative hypothesis and used to test for constant returns to scale. The 
power of the test is estimated by reporting the ratio of the number of time the null hypothesis is rejected over the 

number of Monte-Carlo iterations (N) for a given nominal size.  
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This experiment is repeated by increasing the divergence of the alternative hypothesis away from the null.  

The experiments are performed for a one-input, one-output technology  1m s   at nominal size 0,05   for 

a sample of twenty DMU, n=10. We suppose that the inputs  1 jx  are generated according to a uniform 

distribution on the interval 
3 3

5 1 tan / tan ,9
4 2 4 2

        
        

     
 where ,


 

 
  

. To generate the 

outputs  jy , we first return an iid standard normal random variables jv  and then we apply the following 

transformations: 

0.1

1

1

3 3
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                           if  5 1 tan / tan ,5
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                                             (19) 

and 

 
0.1

1 15 1 tan tan   if  5,9
2 4 2 4

jv

j j jy x e x
         

          
     

                                               (20) 

 

The data generating process defined by equations (19) and (20) is a piecewise linear functions with the two 

segments intersecting at the point (5,5). On the first part of the function (equation (20)), the returns to scale are 
increasing while the technology exhibits decreasing returns to scale on the second part (given by equation (20)). 

We also add a further condition on the data generating process. All input-output combinations,  1 ,j jx y , have the 

same chance of being generated under the irs technology (that is, for values of x smaller than five) as under the 
drs technology (that is, for values of x larger than five). 
 

When   , equations (19) and (20) simplifies to 
0.1 j

j jy x e


 , which is a constant return to scale technology. 

The angle formed by the ray from the origin through (5,5) (the crs technology) and either of the two segments of 

the technology is equal to / 2  . The two segments of the technology form a right angle at (5,5) when 

/ 2  . It is important to control for the type of returns to scale during the course of the Monte-Carlo 

experiment. This is done by changing the value assumed by  ; this controls for the degrees of departure from the 

null hypothesis (i.e., the technology is assumed to exhibit constant returns to scale). Increasing   increases the 

magnitude of the kink and pushes the technology away from the crs technology. 
 

To perform the Monte-Carlo experiments using the DGP defined by equations (19) and (20), we set the following 

values for the angle | 0,01,...0,09,  0,1, 0,4
2

k k


 
 

   
 

   and we construct the power function, 

 P  , for each DMU for test #1 when n=10. Again, the Monte-Carlo experiments consists in B=2000 bootstrap 

simulations for N=1000 Monte-Carlo iterations for each DMU. 
 

The results of the simulation experiments are represented on Figure 1 (while the numbers used to compute theses 

figures are in Table A1 of the Appendix). On average, the value of the power function is 0.5696 for 3,125   

(i.e. k=0,01) and 0,6714 for 3,11   (i.e. k=0,02). The power function increases continuously up to k=0,2 

( 2,827  ) and continues to increase for many DMUs after. However, in some cases, the power decreases 

slightly when k increases. The average value of the peaks is 0,9746. After the peak, the power function seems to 

exhibit a very slow decrease (0,9639 for k=0,3 and 0,9407 for k=0,4). This phenomenon is generalized to all 
DMUs. For example, for DMU number one, we have a value of 0,593 for k=0,01 and a peak at 0,987 for k=0,2.  
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The highest power is reached by DMU 6 and assumes the value 0,996 for k=0,2. DMU 8 has power equal to 0,972 

for values of k=0,3 and 0,4. In general, at k=0,2 and above, the power peaks and remains fairly close to one. 
 

Figure 1: Power Functions ( 0,05, 10, 1)n m s      
 

 
 

The decreasing power function for high values of k is most likely related to the two-piece linear technology. The 

decrease in the power function happens in the neighbourhood of angle values 2,827   (i.e. k=0,2) and 

2,513  (i.e. k=0,4). The contraction of the support of the uniform distribution that generated the inputs as a 

result of the larger angles leads to many input-output combinations close to the point (5,5) where the technology 

exhibits constant returns to scale. Even though the power function does not reach the value one, the power is 

inversely related to the angle, so as the data generating process drifts away from the null hypothesis, the power 
increases. This unexpected result for the shape of the power curve can be explained by the very small dimension 

of technology  1 m s . Moreover, showing estimated size and especially power for only single output and 

single input case is misleading, in the light of the “curse of dimensionality” problem. However, with a complex 

computation it is difficult to make simulations for a technology for more than one input and one output. 
 

4. Conclusion 
 

In this article we have developed a procedure to test non parametric statistical hypothesis concerning the scale 

efficiency of organization. Because there is no asymptotic distribution for the test statistic under the null 
hypothesis, we used a smooth bootstrap methodology to approximate it. This approach allows us to estimate the 

p-values of the test and to determine a decision rule to accept or reject the null hypothesis.  Our approach is based 

on the work of Simar and Wilson (2002) which use smooth bootstrap methodology to solve the hypothesis test 

problem. However in this paper, we have developed an individual test procedure not global as them. This 
procedure allows us to determine the nature of the scale efficiency of each organization.   
 

To assess the performance of our test, we perform limited Monte-Carlo experiments. We chose to limit the 

number of cases under study because of the complexity of the calculations involved (the number of experiments 

for each test requires to solve   1N n B    linear programs, and obviously the computing time increases 

with the number of sample points, n). The first step of the experiments was to contrast the nominal and real size of 
the test. In general, the distortion between the nominal size and the simulated value is very small.  
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When the sample size increases, this distortion decreases substantially, but without surprises increases when the 

dimension of the problem increases (e.g. when the number of inputs is larger, as it is the case in our experiments). 
This latter result can be attributed to the curse of dimensionality of nonparametric problems. The second step of 

the experiments was to assess the power of the test. In a limited scale problem (one-input and one-output), using a 

piecewise linear frontier, we found an unexpected form for the power curves: start at about 0.5 or even higher and 

are quite flat, often not reaching unity and sometimes falling. This can be explained by the problem of “curse of 
dimensionality”. Indeed, showing estimated size and especially power for only single output single input case is 

misleading, in the light of the “curse of dimensionality” problem. The study of the performance of our test 

requires simulations with higher dimension technology. This complicates the computation and requests a 
prohibitive execution time. 
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Appendix 
 

Table A1 : Power Functions 
 

K DMU1 DMU2 DMU3 DMU4 DMU5 DMU6 DMU7 DMU8 DMU9 DMU10 

0,01 0,593 0,515 0,541 0,502 0,671 0,684 0,528 0,502 0,606 0,554 

0,02 0,684 0,567 0,697 0,58 0,84 0,753 0,58 0,619 0,723 0,671 

0,03 0,697 0,606 0,736 0,619 0,853 0,818 0,593 0,684 0,775 0,649 

0,04 0,762 0,658 0,775 0,632 0,905 0,831 0,632 0,723 0,812 0,738 

0,05 0,762 0,697 0,775 0,684 0,918 0,857 0,671 0,796 0,855 0,784 

0,06 0,875 0,723 0,832 0,71 0,931 0,87 0,71 0,863 0,871 0,834 

0,07 0,875 0,723 0,877 0,71 0,962 0,87 0,897 0,892 0,914 0,884 

0,08 0,882 0,81 0,912 0,846 0,962 0,953 0,91 0,915 0,927 0,927 

0,09 0,896 0,874 0,927 0,883 0,98 0,961 0,923 0,945 0,954 0,959 

0,1 0,938 0,921 0,943 0,896 0,991 0,97 0,968 0,956 0,972 0,976 

0,2 0,987 0,973 0,975 0,914 0,998 0,996 0,975 0,961 0,986 0,981 

0,3 0,976 0,914 0,975 0,993 0,979 0,905 0,979 0,972 0,949 0,997 

0,4 0,961 0,887 0,954 0,997 0,962 0,853 0,936 0,972 0,931 0,954 

 


