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Abstract 
 

This study concerns the problem of finding shortest paths from one node to all other nodes in networks for which 

arc costs can vary with time, each arc has a transit time and parking with a corresponding time-varying cost is 

allowed at the nodes. it show that this problem is equivalent to a classical shortest path problem in a time-

expanded network. The label correcting algorithm is used for finding shortest paths. 
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1. Introduction 
 

In congested transportation networks, arc travel times change over time due to time-of-day variations in traffic 

congestion. Even if one can account for these time-of-day variations, future travel times can at best be known a 

priori with uncertainty due to unforeseen events, such as poor roadway conditions, vehicle breakdowns, traffic 

accidents, and driver behavior. In this work, we develop path search techniques that explicitly consider the 

inherent time-varying nature of future travel times. Recent studies have focused on time-dependent graphs [1–6]. 

This type of generalization is useful for real word applications. A simple example is that of a computer 

communications network composed of dial up links each with its individual dialing schedules. Since delays 

depend on these predetermined schedules, finding the best route for a message from source to destination involves 

the computation of time-dependent functions [5]. Many types of networks exhibit this kind of dynamic behavior. 

in practical applications, weight of a link is often the time required to traverse that link. This weight  may change 

as a function of time. Consider a network that represents a city with the usual rush hour traffic patterns. The 

dynamic shortest path problem is a generalization of the shortest path problem whose aim is to find a path of 

minimum cost (length) through a network for which 
 

1. each arc has a transit time which specifies the amount of time to traverse through each arc, 

2. parking (or waiting) is permitted at the nodes of the network for later departure, 

              And 

3. Network characteristics such as arc transit times and costs (or length) can change over time and are 

known for all values of time. 
 

The aim of this paper is to study the dynamic shortest path problem in a discrete time setting with positive transit 

times. We show that the problem is reduced to a classical shortest path problem on a so-called time-expanded 

network. This allow us to apply algorithms that are available in the classical case to the dynamic case. Then we 

use label correcting algorithm for solving the above problem. The paper is organized as follows: After review of 

the shortest path problem in Section 2, we define necessary notation of the dynamic shortest path problem in 

Section 3, then we use Label Correcting Algorithm for solving this problem and summarize our conclusions the 

related problems in Sect. 4, 5. respectively. 
 

2. Review of the shortest path problem 
 

The shortest path problem has many useful applications. Hence, it has been a subject of extensive research. 

Dijkstra [7] provided a now well-known algorithm, which solves the problem in O(n
2
) time. Floyd [8] relaxed the 

constraint that all weights must be non-negative. Floyd provided an algorithm that solves this more general 

problem in O(n
3
) time. When the weights change as a function of time wij(t) such networks are called dynamic 

networks. In a dynamic network, weights exhibit a dynamic pattern.  
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However, the weights are not deterministic at any time or over any time interval. These networks typify what is 

seen in the real world. Fu [4] and Dreyfus [2] show that previous algorithms, such as Dijkstra’s [7], can be 

extended to provide polynomial time algorithms for this more general network type. However, they assume that 

the weight functions are known ahead of time, are monotonic and do not change. Such assumptions are not 

necessarily suited for many real life situations. Fu showed that finding the shortest path in these networks is an 

intractable problem. The intractability is a result of the violation of Bellman’s principle. Bellman’s principle of 

optimality states that ‘‘any sub path of a shortest path must be a shortest path’’ [4]. He has shown that when travel 

times do not change monotonically Bellman’s principle may be violated. Fu developed several types of heuristic 

search algorithms. The general properties and algorithms have been discussed in both discrete time and 

continuous time settings by Ahuja et al. [9], Cai et al. [1], Chabini [10] Orda and Rom [6, 11], Pallottino and 

Scutella [12], and Philpott and Mees[13,14] among others. The problem considered in this paper is that of a 

dynamic network, where the weights (costs) Cij(t) change as a function of time. 
 

3. Definitions and preliminaries 
 

Given a dynamic network G = (V, E, T) with discrete-time consists of a set of nodes V, (|V| = n), node set V = {1, 

2, . . . , n} ,a set of arcs E,(|E| = m), arc set E ⊆ V × V and a fixed time horizon T 𝜖R
+
. we assume that every pair 

of nodes is connected by at most one arc. Each arc (i, j) 𝜖 E has an associated transit time λi,j , if a vehicle leaves 

node i at time t along the arc (i, j) then it arrives at node j at time t + λi,j. we define a node-time pair to be a 

member of V ×{0,1,…,T-1}. A discrete-time dynamic path from node-time pair (i, α) to node-time pair (j, β) is a 

sequence of distinct node-time pairs as  
 

P : ( j, α) = (i1, t1), (i2, t2), . . . , (is , ts ) = ( j, β), 
 

in which either (ik , ik+1) ∈ E and 𝑡𝑘+1 =  𝑡𝑘 + 𝜆𝑖𝑘  ,𝑖𝑘+1  , in which case traffic leaves node ik for node ik+1 at time tk 

and arrives at tk+1, or ik = ik+1, in which case parking occurs at node ik at the time step tk+1. Such a sequence is 

called a discrete-time dynamic cycle if (i, α) = (j, β) and the other node-time pairs are distinct. The cost of a 

dynamic path P is defined by 

𝐶𝑜𝑠𝑡 𝑃 ≔   𝑐𝑖𝑘 ,𝑖𝑘+1

 𝑖𝑘 ,𝑖𝑘+1 

 𝑡𝑘 +   𝑓𝑖𝑘

𝑡𝑘+1

𝑡𝑘𝑖𝑘=𝑖𝑘+1

(𝛿) 

 

where ci,j (t) is the traversal cost along arc (i, j) at time t, and 𝑓𝑖𝑘 (𝛿) is the parking cost at node i at time t. A path P 

is said to be a dynamic shortest path from to node-time pair (i,α) to node-time pair ( j, β), if Cost[P] ≤ Cost[P'] for 

all dynamic paths P’ from (i,α) to ( j, β). We suppose that the dynamic network G contains a dynamic path from 

node-time pair (1,0) to every other node-time pair (i, t). by introducing artificial arcs (1,i) joining node 1 to node i 

for each node i 𝜖 V \{1}. Each artificial arc (1, i) has a zero transit time and a large traversal cost. It is clear that no 

such arc would appear in a dynamic shortest path from (1, 0) to any node-time pair (i,t) unless network G contains 

no dynamic path from (1,0) to (i,t) without artificial arcs. We now use the Modified Label Correcting Algorithm 

for solving the discrete dynamic shortest path problem. The basic idea is to fan out from node-time pair (1, 0) and 

label other node-time pairs according to their distances from (1,0). Before preceding our discussion, by using [9] 

give necessary and sufficient conditions for a set of labels to represent the length of shortest dynamic paths.  

Shortest Path Optimality Conditions: For any node-time pair (i,t), let di(t) denote the length of some dynamic path 

from node-time pair (1,0) to node-time pair (i,t). Then the labels di(t) represent the length of shortest dynamic 

paths if and only if they satisfy the following shortest path optimality conditions: 
 

1)𝑑𝑖 𝑡 +  𝑓𝑖𝑘 (𝛿)𝑇
𝑡  is monotonic decreasing on{0,1,…,T-1}for every i 𝜖 V; 

2) ci, j (t) + di(t) − dj (t + λi,j) ≥ 0, for every (i, j) 𝜖 E and t 𝜖 {0,1,…,T-1}. 
 

Proof -It is obvious that if the labels di(t) are the length of shortest augmenting paths, they satisfy the optimality 

conditions (1) and (2). So we assume that for any node-time pair (i,t), labels di(t) is the length of some dynamic 

path from node-time pair (1,0) to node-time pair (i,t) satisfying conditions (1) and (2). Thus di(t) is an upper 

bound on the length of the shortest dynamic path from node-time pair (1,0) to node-time pair (i,t). We show that 

di(t) is also a lower bound on the length of the shortest dynamic path from node-time pair (1,0) to node-time pair 

(i,t), which implies the conclusion of the Optimality Conditions. Consider an arbitrary dynamic path P : (1, 0) = 

(i1, t1), (i2, t2), . . . , (iq , tq ) = (i, t) from (1,0) to (i,t).  
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To simplify notation, we assume without loss of generality that ik = ik+1 for only one k, say 𝜏 (1 ≤ 𝜏 ≤ q − 1) and (ik 

, ik+1) 𝜖 E for all other k = 1, . . . , q. This means that the parking only occurs at node 𝑖𝜏  from time 𝑡𝜏  to 𝑡𝜏+1. 

Hence we have tk+1 = tk + λik ,ik+1   for k = 1, . . . , 𝜏 −1, 𝜏 +1, . . . , q.  Conditions (1) and (2) imply that 

 

𝑑𝑖 𝑡 = 𝑑𝑖𝑞  𝑡𝑞 ≤ 𝑑𝑖𝑞−1
 𝑡𝑞−1 + 𝑐𝑖𝑞−1 ,𝑖𝑞  𝑡𝑞−1                

    

                      ≤ 𝑑𝑖𝑞−2
 𝑡𝑞−2 + 𝑐𝑖𝑞−2 ,𝑖𝑞−1

 𝑡𝑞−2 + 𝑐𝑖𝑞−1 ,𝑖𝑞  𝑡𝑞−1  

  ⋮ 

≤ 𝑑𝑖𝜏+1
 𝑡𝜏+1 +  𝑐𝑖𝑘 ,𝑖𝑘+1

(
𝑞−1
𝑘=𝜏+1 𝑡𝑘)  

 

                 ≤ 𝑑𝑖𝜏
 𝑡𝜏 +  𝑓𝑖𝜏 (𝛿)

𝑡𝜏+1
𝑡𝜏

+  𝑐𝑖𝑘 ,𝑖𝑘+1
(

𝑞−1
𝑘=𝜏+1 𝑡𝑘)  

               ⋮                 

              ≤ 𝑑𝑖1
 𝑡1 + 𝑐𝑖1 ,𝑖2

 𝑡1 +  𝜏𝑘=2 − 𝑐𝑖𝑘 ,𝑖𝑘+1
 𝑡𝑘 +  𝑓𝑖𝜏

𝑡𝜏+1
𝑡𝜏

 𝛿 +  𝑐𝑖𝑘 ,𝑖𝑘+1

𝑞−1
𝑘=𝜏+1 (𝑡𝑘) 

 

=Cost [P] 

 

Therefore, di(t) is a lower bound on the cost of any dynamic path from (1,0) to (i, t).∎ 
 

Time-expanded Network: Ford and Fulkerson introduce the notion of time-expanded networks. A time-expanded 

network contains one copy of the node set of the underlying ‘static’ network for each discrete time step (building 

a time layer). For a dynamic network G= (V,A,T) the time expanded network G
T
= (V

T
,A

T
) is defined as follows: A 

time-expanded network of G, denoted by G(𝜑),where 𝜑 = {𝑡0 , 𝑡1 ,… , 𝑡𝑝} contains p+1 copies of V, denoted by V0, 

V1,…, Vp ,in which Vq-1 corresponds to the time step tq-1 for q = 1, . . . , p −1, and Vp to the time horizon T. 

Subsequently, index q varies from 1 to p. The copy of node i ∈ V in Vq-1 is denoted by iq-1. For each arc (i,j) 𝜖 E 

and each time 𝑡𝑞−1𝜖𝜑 with 0 ≤  𝑡𝑞−1 + 𝜆𝑖,𝑗 ≤ 𝑇, Traversing through arc(iq-1, jq' ) where, tq' = tq-1+𝜆𝑖 ,𝑗  corresponds 

to leaving node i at time tq-1 and arriving at node j at time tq'. Hence, arc(iq-1, jq ) has an associated cost ci, j (tq−1). 

For each node i , there is a holdover arc from iq−1 to iq . Traveling through arc (iq−1, iq ) corresponds to the parking 

at node i from time tq−1 to tq . So holdover arc (iq−1, iq ) has an associated cost fi (tq−1). An illustration of a time-

expanded network is given in Fig. 1. 

 

 
Fig. 1 on the left hand side a network G with transit times on the arcs is given. Let T = 4 be the time horizon 

and 𝜑 = {0, 1, 2, 3, 4} be a valid partition. On the right hand side the corresponding time-expanded network G(𝜑) 

with respect to the partition 𝜑 is depicted.[16] 
 

Lemma 1 If network G contains no dynamic cycle, then there are exists a set of labels di which satisfies the 

shortest path optimality conditions (1) and (2). 
 

The proof of this lemma relies on the concept of time-expanded networks which we introduce before. 

Proof-We suppose that φ = {t0, t1,. . . ,tp} is a valid partition for the discrete dynamic shortest path problem. 

Consider the time-expanded network G(φ). Let di(tq) denote the cost of the shortest path from node-time pair (1,0) 

to node-time pair (i, tq). in G(φ), for each i 𝜖V and each tq 𝜖φ.We note, from Sect. 5.2 in [17], that the labels di(tq) 

are well defined and satisfy the following conditions: 



© Centre for Promoting Ideas, USA                                                                                                www.ijbssnet.com 

242 

 

𝑑𝑖 𝑡𝑞 ≤ 𝑑𝑖 𝑡𝑞−1 +  𝑓𝑖 𝑡     , 𝑖𝜖𝑉 , 𝑡𝑞𝜖𝜑,                    (𝐼)

𝑡𝑞

𝑡𝑞−1

 

𝑑𝑖 𝑡𝑞 + 𝜆𝑖,𝑗  ≤ 𝑑𝑖 𝑡𝑞 + 𝑐𝑖𝑗  𝑡𝑞        ,  𝑖, 𝑗 𝜖𝐸 , 𝑡𝑞𝜖𝜑,           (𝐼𝐼)       
 

Now with respect to partition 𝜑 and conditions (I) and (II) hold for each time step 𝑡𝑞𝜖𝜑, we can easily check that 

the labels 𝑑𝑖  satisfy the shortest path optimality conditions(1) and (2). This completes the proof of the lemma.∎ 

We wish to determine a shortest dynamic path from node-time pair (1, 0) to every other node-time pair (i, t). 
 

4. Label Correcting Algorithm 
 

A label correcting algorithm is iterative and assigns tentative distance labels to nodes at each step.The time 

complexity of the algorithm is O (|V||E|) [9]. Note that, for the network G
T
, |V

T
| = nT and |A

T
| = mT. According to 

the definition of time expanded network for a dynamic network, G = (V, A, T), the time complexity of the 

algorithm is O (|nT || mT |). The distance labels are estimates of (i.e. lower bounds on) the shortest path distances 

and are considered as temporary until the final step where d(i,tα)is the shortest path length from the source node-

time pair (1,0) to node-time pair (i,tα).The algorithm maintains a LIST of nodes with the property that if there is an 

arc-time pair ((i,tα),(j,tβ)) for which d(j,tβ) < d(i,tα)+ Cij(tα) then LIST must contain node-time pair (i, tq) The 

algorithm runs as follows: 
 

Step 1. Set the distance labels for the nodes as follows: 

 

d(1,0)=0  

d(1,1)=……=d(1,T)= ∞ 

d(i,tα)= ∞ ,      0 = t0 ≤……≤ tq-1 ≤ tq=T , i=2,3,…,n , 0 ≤ 𝛼 ≤ 𝛽 ≤ 𝑞 

 

Initialise the list of nodes LIST= [(1,0)]. 
 

Step 2. If LIST is empty, go to Step 5. Select the first node (i,tα) from LIST .Delete (i,tα) from LIST. 
 

Step 3. If (i,tα)  has no uncorrected successors (successors for which the distance label has not been corrected), go 

to Step 2. Otherwise, select an arbitrary uncorrected successor of (i,tα) . where the successor is (i,tα+1) or (j,tβ) . 
 

Step 4. If uncorrected successor of (i,tα) be (j,tβ) then d(j,tβ) = min{ d(j,tβ),Cij(tα)+ d(i,tα)}and if the distance label 

П(j,tβ)  has changed and (j,tβ) ∉ LIST add node (j,tβ) to the end of LIST and go to Step 3.  
 

If uncorrected successor of (i,tα) be (i,tα+1)  then d(i,tα+1) = min{ d(i,tα+1), 𝑓𝑖𝛼 (𝑡𝛼)+ d(i, tα)}. If the distance label 

d(i,tα+1) has changed and (i,tα+1) ∉ LIST add node (i,tα+1) to the end of LIST and go to Step 3. 
 

Step 5. Stop. 
 

The algorithm assumes the presence of a single starting node to start the calculations in Step 1. 
 

We can store all nodes whose distance labels change during a pass, and consider (or examine) only those nodes in 

the next pass. One plausible way to implement this approach is to store the nodes in a list whose distance labels 

change in a pass and examine this list in the first-in, first-out (FIFO) order in the next pass. If we follow this 

strategy in every pass, the resulting implementation is provided that we maintain LIST as a queue (i.e., select 

nodes from the front of LIST and add nodes to the rear of LIST). 
 

5. Conclusion 
 

In this paper we considered the dynamic shortest path problem, motivated by its applications in dynamic 

minimum cost flows. We showed that this problem is equivalent to a classical shortest path problem in a so-called 

time-expanded network. Although our approach allows us to apply any standard technique on the time-expanded 

network, the size of this network is typically very large for realistic problems and it may be beneficial to avoid 

such explicit expansion. We used the Label Correcting Algorithm for solving this problem that the time 

complexity of the algorithm is O (|nT || mT |). 
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